Hugging Face Accelerate
Accelerate
es una biblioteca de Hugging Face que permite ejecutar el mismo código PyTorch en cualquier configuración distribuida añadiendo sólo cuatro líneas de código.
Instalación
Para instalar accelerate
con pip
simplemente ejecuta:
pip install accelerate
Y con conda
:
conda install -c conda-forge accelerate
Configuración
En cada entorno en el que se intale accelerate
lo primero que se tiene que hacer es configurarlo, para ello ejecutamos en una terminal:
accelerate config
!accelerate config
--------------------------------------------------------------------------------In which compute environment are you running?This machine--------------------------------------------------------------------------------multi-GPUHow many different machines will you use (use more than 1 for multi-node training)? [1]: 1Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: noDo you wish to optimize your script with torch dynamo?[yes/NO]:noDo you want to use DeepSpeed? [yes/NO]: noDo you want to use FullyShardedDataParallel? [yes/NO]: noDo you want to use Megatron-LM ? [yes/NO]: noHow many GPU(s) should be used for distributed training? [1]:2What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:0,1--------------------------------------------------------------------------------Do you wish to use FP16 or BF16 (mixed precision)?noaccelerate configuration saved at ~/.cache/huggingface/accelerate/default_config.yaml
En mi caso las respuestas han sido
- In which compute environment are you running?
- "This machine"
- [_] "AWS (Amazon SageMaker)"
Quiero configurarlo en mi ordenador
- Which type of machine are you using?
- [_] multi-CPU
- [_] multi-XPU
- multi-GPU
- [_] multi-NPU
- [_] TPU
Como tengo 2 GPUs y quiero ejecutar códigos distribuidos en ellas elijo
multi-GPU
- How many different machines will you use (use more than 1 for multi-node training)? [1]:
- 1
Elijo
1
porque solo voy a ejecutar en mi ordenador
- Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]:
- no
Con esta opción, se puede elegir que
accelerate
chequee errores en la ejecución, pero haría que vaya más lento, así que elijono
, y en caso de que haya errores lo cambio ayes
Do you wish to optimize your script with torch dynamo?[yes/NO]:
- no
Do you want to use FullyShardedDataParallel? [yes/NO]:
- no
Do you want to use Megatron-LM ? [yes/NO]:
- no
How many GPU(s) should be used for distributed training? [1]:
- 2
Elijo
2
porque tengo 2 GPUs
- What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:
- 0,1
Elijo
0,1
porque quiero usar las dos GPUs
- Do you wish to use FP16 or BF16 (mixed precision)?
- no
- [_] fp16
- [_] bf16
- [_] fp8
De momento elijo
no
, porque para simplificar el código cuando no usoacelerate
vamos a entrenar en fp32, pero lo ideal sería usar fp16
La configuración se guardará en ~/.cache/huggingface/accelerate/default_config.yaml
y se puede modificar en cualquier momento. Vamos a ver qué hay dentro
!cat ~/.cache/huggingface/accelerate/default_config.yaml
compute_environment: LOCAL_MACHINEdebug: falsedistributed_type: MULTI_GPUdowncast_bf16: 'no'gpu_ids: 0,1machine_rank: 0main_training_function: mainmixed_precision: fp16num_machines: 1num_processes: 2rdzv_backend: staticsame_network: truetpu_env: []tpu_use_cluster: falsetpu_use_sudo: falseuse_cpu: false
Otra forma de ver la configuración que tenemos es ejecutando en una terminal:
accelerate env
!accelerate env
Copy-and-paste the text below in your GitHub issue- `Accelerate` version: 0.28.0- Platform: Linux-5.15.0-105-generic-x86_64-with-glibc2.31- Python version: 3.11.8- Numpy version: 1.26.4- PyTorch version (GPU?): 2.2.1+cu121 (True)- PyTorch XPU available: False- PyTorch NPU available: False- System RAM: 31.24 GB- GPU type: NVIDIA GeForce RTX 3090- `Accelerate` default config:- compute_environment: LOCAL_MACHINE- distributed_type: MULTI_GPU- mixed_precision: fp16- use_cpu: False- debug: False- num_processes: 2- machine_rank: 0- num_machines: 1- gpu_ids: 0,1- rdzv_backend: static- same_network: True- main_training_function: main- downcast_bf16: no- tpu_use_cluster: False- tpu_use_sudo: False- tpu_env: []
Una vez hemos configurado accelerate
podemos probar si lo hemos hecho bien ejecutando en una terminal:
accelerate test
!accelerate test
Running: accelerate-launch ~/miniconda3/envs/nlp/lib/python3.11/site-packages/accelerate/test_utils/scripts/test_script.pystdout: **Initialization**stdout: Testing, testing. 1, 2, 3.stdout: Distributed environment: DistributedType.MULTI_GPU Backend: ncclstdout: Num processes: 2stdout: Process index: 0stdout: Local process index: 0stdout: Device: cuda:0stdout:stdout: Mixed precision type: fp16stdout:stdout: Distributed environment: DistributedType.MULTI_GPU Backend: ncclstdout: Num processes: 2stdout: Process index: 1stdout: Local process index: 1stdout: Device: cuda:1stdout:stdout: Mixed precision type: fp16stdout:stdout:stdout: **Test process execution**stdout:stdout: **Test split between processes as a list**stdout:stdout: **Test split between processes as a dict**stdout:stdout: **Test split between processes as a tensor**stdout:stdout: **Test random number generator synchronization**stdout: All rng are properly synched.stdout:stdout: **DataLoader integration test**stdout: 0 1 tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,stdout: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,stdout: 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,stdout: 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], device='cuda:1') <class 'accelerate.data_loader.DataLoaderShard'>stdout: tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,stdout: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,stdout: 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,stdout: 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], device='cuda:0') <class 'accelerate.data_loader.DataLoaderShard'>stdout: Non-shuffled dataloader passing.stdout: Shuffled dataloader passing.stdout: Non-shuffled central dataloader passing.stdout: Shuffled central dataloader passing.stdout:stdout: **Training integration test**stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Training yielded the same results on one CPU or distributed setup with no batch split.stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Training yielded the same results on one CPU or distributes setup with batch split.stdout: FP16 training check.stdout: FP16 training check.stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Keep fp32 wrapper check.stdout: Keep fp32 wrapper check.stdout: BF16 training check.stdout: BF16 training check.stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout:stdout: Training yielded the same results on one CPU or distributed setup with no batch split.stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: FP16 training check.stdout: Training yielded the same results on one CPU or distributes setup with batch split.stdout: FP16 training check.stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Keep fp32 wrapper check.stdout: Keep fp32 wrapper check.stdout: BF16 training check.stdout: BF16 training check.stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout: Model dtype: torch.float32, torch.float32. Input dtype: torch.float32stdout:stdout: **Breakpoint trigger test**Test is a success! You are ready for your distributed training!
Vemos que termina diciendo Test is a success! You are ready for your distributed training!
por lo que todo está correcto.
Entrenamiento
Optimización del entrenamiento
Código base
Vamos a hacer primero un código de entrenamiento base y luego lo optimizaremos para ver cómo se hace y cómo mejora
Primero vamos a buscar un dataset, en mi caso voy a usar el dataset tweet_eval, que es un dataset de clasificación de tweets, en concreto voy a descargar el subset emoji
que clasifica los tweets con emoticonos
from datasets import load_datasetdataset = load_dataset("tweet_eval", "emoji")dataset
DatasetDict({train: Dataset({features: ['text', 'label'],num_rows: 45000})test: Dataset({features: ['text', 'label'],num_rows: 50000})validation: Dataset({features: ['text', 'label'],num_rows: 5000})})
dataset["train"].info
DatasetInfo(description='', citation='', homepage='', license='', features={'text': Value(dtype='string', id=None), 'label': ClassLabel(names=['❤', '😍', '😂', '💕', '🔥', '😊', '😎', '✨', '💙', '😘', '📷', '🇺🇸', '☀', '💜', '😉', '💯', '😁', '🎄', '📸', '😜'], id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name='parquet', dataset_name='tweet_eval', config_name='emoji', version=0.0.0, splits={'train': SplitInfo(name='train', num_bytes=3808792, num_examples=45000, shard_lengths=None, dataset_name='tweet_eval'), 'test': SplitInfo(name='test', num_bytes=4262151, num_examples=50000, shard_lengths=None, dataset_name='tweet_eval'), 'validation': SplitInfo(name='validation', num_bytes=396704, num_examples=5000, shard_lengths=None, dataset_name='tweet_eval')}, download_checksums={'hf://datasets/tweet_eval@b3a375baf0f409c77e6bc7aa35102b7b3534f8be/emoji/train-00000-of-00001.parquet': {'num_bytes': 2609973, 'checksum': None}, 'hf://datasets/tweet_eval@b3a375baf0f409c77e6bc7aa35102b7b3534f8be/emoji/test-00000-of-00001.parquet': {'num_bytes': 3047341, 'checksum': None}, 'hf://datasets/tweet_eval@b3a375baf0f409c77e6bc7aa35102b7b3534f8be/emoji/validation-00000-of-00001.parquet': {'num_bytes': 281994, 'checksum': None}}, download_size=5939308, post_processing_size=None, dataset_size=8467647, size_in_bytes=14406955)
Vamos a ver las clases
print(dataset["train"].info.features["label"].names)
['❤', '😍', '😂', '💕', '🔥', '😊', '😎', '✨', '💙', '😘', '📷', '🇺🇸', '☀', '💜', '😉', '💯', '😁', '🎄', '📸', '😜']
Y el número de clases
num_classes = len(dataset["train"].info.features["label"].names)num_classes
20
Vemos que el dataset tiene 20 clases
Vamos a ver la secuencia máxima de cada split
max_len_train = 0max_len_val = 0max_len_test = 0split = "train"for i in range(len(dataset[split])):len_i = len(dataset[split][i]["text"])if len_i > max_len_train:max_len_train = len_isplit = "validation"for i in range(len(dataset[split])):len_i = len(dataset[split][i]["text"])if len_i > max_len_val:max_len_val = len_isplit = "test"for i in range(len(dataset[split])):len_i = len(dataset[split][i]["text"])if len_i > max_len_test:max_len_test = len_imax_len_train, max_len_val, max_len_test
(142, 139, 167)
Así que definimos la secuencia máximo en general como 130 para la tokeniazción
max_len = 130
A nosotros nos interesa el dataset tokenizado, no las secuencias en crudo, así que creamos un tokenizador
max_len = 130from transformers import AutoTokenizercheckpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)
Creamos una función de tokenización
max_len = 130from transformers import AutoTokenizercheckpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")
Y ahora tokenizamos el dataset
tokenized_dataset = {
"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),
"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),
"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),
}
Como vemos ahora tenemos los tokens (input_ids
) y las máscaras de atención (attention_mask
), pero vamos a ver qué tipo de datos tenemos
max_len = 130from transformers import AutoTokenizercheckpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}type(tokenized_dataset["train"][0]["input_ids"]), type(tokenized_dataset["train"][0]["attention_mask"]), type(tokenized_dataset["train"][0]["label"])
Map: 0%| | 0/45000 [00:00<?, ? examples/s](list, list, int)
tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])type(tokenized_dataset["train"][0]["label"]), type(tokenized_dataset["train"][0]["input_ids"]), type(tokenized_dataset["train"][0]["attention_mask"])
(torch.Tensor, torch.Tensor, torch.Tensor)
Creamos un dataloader
import torchfrom torch.utils.data import DataLoaderBS = 64dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}
Cargamos el modelo
import torchfrom torch.utils.data import DataLoaderBS = 64dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}from transformers import AutoModelForSequenceClassificationmodel = AutoModelForSequenceClassification.from_pretrained(checkpoints)
Vamos a ver cómo es el modelo
import torchfrom torch.utils.data import DataLoaderBS = 64dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}from transformers import AutoModelForSequenceClassificationmodel = AutoModelForSequenceClassification.from_pretrained(checkpoints)model
RobertaForSequenceClassification((roberta): RobertaModel((embeddings): RobertaEmbeddings((word_embeddings): Embedding(50265, 768, padding_idx=1)(position_embeddings): Embedding(514, 768, padding_idx=1)(token_type_embeddings): Embedding(1, 768)(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))(encoder): RobertaEncoder((layer): ModuleList((0-11): 12 x RobertaLayer((attention): RobertaAttention((self): RobertaSelfAttention((query): Linear(in_features=768, out_features=768, bias=True)(key): Linear(in_features=768, out_features=768, bias=True)(value): Linear(in_features=768, out_features=768, bias=True)(dropout): Dropout(p=0.1, inplace=False))(output): RobertaSelfOutput((dense): Linear(in_features=768, out_features=768, bias=True)(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False)))(intermediate): RobertaIntermediate((dense): Linear(in_features=768, out_features=3072, bias=True)(intermediate_act_fn): GELUActivation())(output): RobertaOutput((dense): Linear(in_features=3072, out_features=768, bias=True)(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)(dropout): Dropout(p=0.1, inplace=False))))))(classifier): RobertaClassificationHead((dense): Linear(in_features=768, out_features=768, bias=True)(dropout): Dropout(p=0.1, inplace=False)(out_proj): Linear(in_features=768, out_features=2, bias=True)))
Vamos a ver su última capa
model.classifier.out_proj
Linear(in_features=768, out_features=2, bias=True)
model.classifier.out_proj.in_features, model.classifier.out_proj.out_features
(768, 2)
Hemos visto que nuestro dataset tiene 20 clases, pero este modelo está entrenado para 2 clases, así que tenemos que modificar la última capa
model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)model.classifier.out_proj
Linear(in_features=768, out_features=20, bias=True)
Ahora sí
Ahora creamos una función de loss
loss_function = torch.nn.CrossEntropyLoss()
Un optimizador
loss_function = torch.nn.CrossEntropyLoss()from torch.optim import Adamoptimizer = Adam(model.parameters(), lr=5e-4)
Y por último una métrica
loss_function = torch.nn.CrossEntropyLoss()from torch.optim import Adamoptimizer = Adam(model.parameters(), lr=5e-4)import evaluatemetric = evaluate.load("accuracy")
Vamos a comprobar que está todo bien con una muestra
loss_function = torch.nn.CrossEntropyLoss()from torch.optim import Adamoptimizer = Adam(model.parameters(), lr=5e-4)import evaluatemetric = evaluate.load("accuracy")sample = next(iter(dataloader["train"]))
loss_function = torch.nn.CrossEntropyLoss()from torch.optim import Adamoptimizer = Adam(model.parameters(), lr=5e-4)import evaluatemetric = evaluate.load("accuracy")sample = next(iter(dataloader["train"]))sample["input_ids"].shape, sample["attention_mask"].shape
(torch.Size([64, 130]), torch.Size([64, 130]))
Ahora esa muestra se la metemos al modelo
model.to("cuda")ouputs = model(input_ids=sample["input_ids"].to("cuda"), attention_mask=sample["attention_mask"].to("cuda"))ouputs.logits.shape
torch.Size([64, 20])
Vemos que el modelo saca 64 batches, lo cual está bien, porque configuramos BS = 20
y cada una con 20 salidas, lo cual está bien porque cambiamos el modelo para que a la salida de 20 valores
Obtenemos la de mayor valor
predictions = torch.argmax(ouputs.logits, axis=-1)predictions.shape
torch.Size([64])
Obtenemos la loss
loss = loss_function(ouputs.logits, sample["label"].to("cuda"))loss.item()
2.9990389347076416
Y el accuracy
accuracy = metric.compute(predictions=predictions, references=sample["label"])["accuracy"]accuracy
0.015625
Ya podemos crear un pequeño bucle de entrenamiento
from fastprogress.fastprogress import master_bar, progress_bar
epochs = 1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
master_progress_bar = master_bar(range(epochs))
for i in master_progress_bar:
model.train()
progress_bar_train = progress_bar(dataloader["train"], parent=master_progress_bar)
for batch in progress_bar_train:
optimizer.zero_grad()
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["label"].to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
loss = loss_function(outputs['logits'], labels)
master_progress_bar.child.comment = f'loss: {loss}'
loss.backward()
optimizer.step()
model.eval()
progress_bar_validation = progress_bar(dataloader["validation"], parent=master_progress_bar)
for batch in progress_bar_validation:
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["label"].to(device)
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
predictions = torch.argmax(outputs['logits'], axis=-1)
accuracy = metric.add_batch(predictions=predictions, references=labels)
accuracy = metric.compute()
master_progress_bar.main_bar.comment = f"Validation accuracy: {accuracy['accuracy']}\n"
Script con el código base
En la mayoría de la documentación de accelerate
se explica cómo usar accelerate
con scripts, así que de momento vamos a hacerlo así y al final explicaremos cómo hacerlo con un notebook
Primero vamos a crear una carpeta en la que vamos a guardar los scripts
from fastprogress.fastprogress import master_bar, progress_barepochs = 1device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model.to(device)master_progress_bar = master_bar(range(epochs))for i in master_progress_bar:model.train()progress_bar_train = progress_bar(dataloader["train"], parent=master_progress_bar)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"].to(device)attention_mask = batch["attention_mask"].to(device)labels = batch["label"].to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)master_progress_bar.child.comment = f'loss: {loss}'loss.backward()optimizer.step()model.eval()progress_bar_validation = progress_bar(dataloader["validation"], parent=master_progress_bar)for batch in progress_bar_validation:input_ids = batch["input_ids"].to(device)attention_mask = batch["attention_mask"].to(device)labels = batch["label"].to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()master_progress_bar.main_bar.comment = f"Validation accuracy: {accuracy['accuracy']} "!mkdir accelerate_scripts
Ahora escribimos el código base en un script
from fastprogress.fastprogress import master_bar, progress_barepochs = 1device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model.to(device)master_progress_bar = master_bar(range(epochs))for i in master_progress_bar:model.train()progress_bar_train = progress_bar(dataloader["train"], parent=master_progress_bar)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"].to(device)attention_mask = batch["attention_mask"].to(device)labels = batch["label"].to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)master_progress_bar.child.comment = f'loss: {loss}'loss.backward()optimizer.step()model.eval()progress_bar_validation = progress_bar(dataloader["validation"], parent=master_progress_bar)for batch in progress_bar_validation:input_ids = batch["input_ids"].to(device)attention_mask = batch["attention_mask"].to(device)labels = batch["label"].to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()master_progress_bar.main_bar.comment = f"Validation accuracy: {accuracy['accuracy']}\n"!mkdir accelerate_scripts%%writefile accelerate_scripts/01_code_base.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluatefrom fastprogress.fastprogress import master_bar, progress_bardataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 64dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model.to(device)master_progress_bar = master_bar(range(EPOCHS))for i in master_progress_bar:model.train()progress_bar_train = progress_bar(dataloader["train"], parent=master_progress_bar)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"].to(device)attention_mask = batch["attention_mask"].to(device)labels = batch["label"].to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)master_progress_bar.child.comment = f'loss: {loss}'loss.backward()optimizer.step()model.eval()progress_bar_validation = progress_bar(dataloader["validation"], parent=master_progress_bar)for batch in progress_bar_validation:input_ids = batch["input_ids"].to(device)attention_mask = batch["attention_mask"].to(device)labels = batch["label"].to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()master_progress_bar.main_bar.comment = f"Validation accuracy: {accuracy['accuracy']}\n"print(f"Accuracy = {accuracy['accuracy']}")
Overwriting accelerate_scripts/01_code_base.py
Y ahora lo ejecutamos
%%time!python accelerate_scripts/01_code_base.py
Accuracy = 0.2112CPU times: user 2.12 s, sys: 391 ms, total: 2.51 sWall time: 3min 36s
Vemos que en mi ordenador ha tardado unos 3 minutos y medio
Código con accelerate
Ahora reemplazamos algunas cosas
- En primer lugar importamos
Accelerator
y lo inicializamos
from accelerate import Accelerator
accelerator = Accelerator()
- Ya no hacemos el típico
torch.device("cuda" if torch.cuda.is_available() else "cpu")
- Sino que dejamos que sea
acelerate
el que elija el dispositivo mediante
device = accelerator.device
- Pasamos los elementos relevantes para el entrenamiento por el método
prepare
y ya no hacemosmodel.to(device)
model, optimizer, dataloader["train"], dataloader["validation"] = preprare(model, optimizer, dataloader["train"], dataloader["validation"])
Ya no mandamos los datos y el modelo a la GPU con
.to(device)
ya queaccelerate
se ha encargado de ello con el métodoprepare
En vez de hacer el backpropagation con
loss.backward()
dejamos que lo hagaaccelerate
con
accelerator.backward(loss)
- A la hora de calcular la métrica en el bucle de validación, necesitamos recopilar los valores de todos los puntos, en caso de estar haciendo un entrenamiento distribuido, para ello hacemos
predictions = accelerator.gather_for_metrics(predictions)
%%writefile accelerate_scripts/02_accelerate_base_code.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluatefrom fastprogress.fastprogress import master_bar, progress_bar# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 64dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])master_progress_bar = master_bar(range(EPOCHS))for i in master_progress_bar:model.train()progress_bar_train = progress_bar(dataloader["train"], parent=master_progress_bar)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)master_progress_bar.child.comment = f'loss: {loss}'# loss.backward()accelerator.backward(loss)optimizer.step()print(f"End of training epoch {i}, outputs['logits'].shape: {outputs['logits'].shape}, labels.shape: {labels.shape}")model.eval()progress_bar_validation = progress_bar(dataloader["validation"], parent=master_progress_bar)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()print(f"End of validation epoch {i}, outputs['logits'].shape: {outputs['logits'].shape}, labels.shape: {labels.shape}")master_progress_bar.main_bar.comment = f"Validation accuracy: {accuracy['accuracy']}\n"print(f"Accuracy = {accuracy['accuracy']}")
Overwriting accelerate_scripts/02_accelerate_base_code.py
Si te fijas he añadido estas dos líneas print(f"End of training epoch {i}, outputs['logits'].shape: {outputs['logits'].shape}, labels.shape: {labels.shape}")
y la línea print(f"End of validation epoch {i}, outputs['logits'].shape: {outputs['logits'].shape}, labels.shape: {labels.shape}")
, las he añadido aposta porque nos van a revelar algo muy importante
Ahora lo ejecutamos, para ejecutar los scripts de accelerate
se hace con el comando accelerate launch
accelerate launch script.py
%%time!accelerate launch accelerate_scripts/02_accelerate_base_code.py
End of training epoch 0, outputs['logits'].shape: torch.Size([64, 20]), labels.shape: torch.Size([64])End of training epoch 0, outputs['logits'].shape: torch.Size([64, 20]), labels.shape: torch.Size([64])End of validation epoch 0, outputs['logits'].shape: torch.Size([64, 20]), labels.shape: torch.Size([8])Accuracy = 0.206End of validation epoch 0, outputs['logits'].shape: torch.Size([64, 20]), labels.shape: torch.Size([8])Accuracy = 0.206CPU times: user 1.6 s, sys: 272 ms, total: 1.88 sWall time: 2min 37s
Vemos que antes tardó unos 3 minutos y medio y ahora tarda más o menos 2 minutos y medio. Bastante mejora. Además si vemos los print
s podemos ver que se han impreso dos veces.
¿Y esto cómo puede ser? pues porque accelerate
ha paralelizado el entrenamiento en las dos GPUs que tengo, por lo que ha sido mucho más rápido.
Además, cuando ejecuté el primer script, esd ecir, cuando no usé accelerate
, la GPU estaba casi llena, mientras que cuando he ejecutado el segundo, es decir, el que usa accelerate
, las dos GPUs estaban muy poco utilizadas, por lo que podemos aumentar el batch size para intentar llenar las dos, vamos a ello!
%%writefile accelerate_scripts/03_accelerate_base_code_more_bs.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluatefrom fastprogress.fastprogress import master_bar, progress_bar# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])master_progress_bar = master_bar(range(EPOCHS))for i in master_progress_bar:model.train()progress_bar_train = progress_bar(dataloader["train"], parent=master_progress_bar)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)master_progress_bar.child.comment = f'loss: {loss}'# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = progress_bar(dataloader["validation"], parent=master_progress_bar)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()master_progress_bar.main_bar.comment = f"Validation accuracy: {accuracy['accuracy']}\n"print(f"Accuracy = {accuracy['accuracy']}")
Overwriting accelerate_scripts/03_accelerate_base_code_more_bs.py
He quitado los prints extra, porque ya hemos visto que el código se está ejecutando en las dos GPUs y he aunmentado el batch size de 64 a 128. Lo ejecutamos a ver
%%time!accelerate launch accelerate_scripts/03_accelerate_base_code_more_bs.py
Accuracy = 0.1052Accuracy = 0.1052CPU times: user 1.41 s, sys: 180 ms, total: 1.59 sWall time: 2min 22s
Aumentando el batch size ha bajado unos segundos el tiempo de ejecución
Ejecución de procesos
Ejecución de código en un único proceso
Antes hemos visto que los print
s se imprimían dos veces, esto es porque accelerate
crea tantos procesos como dispositivos donde se ejecuta el código, en mi caso crea dos procesos por tener dos GPUs.
Sin embargo no todo el código debería ejecutarse en todos los procesos, por ejemplo los print
s, ralentizan mucho el código, como para ejecutarlo varias veces, si se guardan los checkpoints, se guardarían dos veces, etc.
Para poder ejecutar parte de un código en un único proceso se tiene que encapsular en una función y decorarla con accelerator.on_local_main_process
, por ejemplo en el siguiente código vas a ver que he creado la siguiente función
@accelerator.on_local_main_process
def print_something(something):
print(something)
Otra opción es meter el código dentro de un if accelerator.is_local_main_process
como en el siguiente código
if accelerator.is_local_main_process:
print("Something")
%%writefile accelerate_scripts/04_accelerate_base_code_some_code_in_one_process.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluatefrom fastprogress.fastprogress import master_bar, progress_bar# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])@accelerator.on_local_main_processdef print_something(something):print(something)master_progress_bar = master_bar(range(EPOCHS))for i in master_progress_bar:model.train()progress_bar_train = progress_bar(dataloader["train"], parent=master_progress_bar)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)master_progress_bar.child.comment = f'loss: {loss}'# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = progress_bar(dataloader["validation"], parent=master_progress_bar)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()master_progress_bar.main_bar.comment = f"Validation accuracy: {accuracy['accuracy']}\n"# print(f"Accuracy = {accuracy['accuracy']}")print_something(f"Accuracy = {accuracy['accuracy']}")if accelerator.is_local_main_process:print(f"End of script with {accuracy['accuracy']} accuracy")
Overwriting accelerate_scripts/04_accelerate_base_code_some_code_in_one_process.py
Vamos a ejecutarlo a ver
%%time!accelerate launch accelerate_scripts/04_accelerate_base_code_some_code_in_one_process.py
Accuracy = 0.2098End of script with 0.2098 accuracyCPU times: user 1.38 s, sys: 197 ms, total: 1.58 sWall time: 2min 22s
Ahora solo se ha impreso el print una vez
Sin embargo, aunque no se ve mucho, las barras de progreso se ejecutan en cada proceso.
No he encontrado una manera de evitar esto con las barras de progreso de fastprogress
, pero sí con las de tqdm
, así que voy a sustituir las barras de progreso de fastprogress
por las de tqdm
y para que se ejecuten en un único proceso hay que añadirle el argumento disable=not accelerator.is_local_main_process
%%writefile accelerate_scripts/05_accelerate_base_code_some_code_in_one_process.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdm# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])@accelerator.on_local_main_processdef print_something(something):print(something)for i in range(EPOCHS):model.train()# progress_bar_train = progress_bar(dataloader["train"], parent=master_progress_bar)progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# master_progress_bar.child.comment = f'loss: {loss}'# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()# progress_bar_validation = progress_bar(dataloader["validation"], parent=master_progress_bar)progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()# print(f"Accuracy = {accuracy['accuracy']}")print_something(f"Accuracy = {accuracy['accuracy']}")if accelerator.is_local_main_process:print(f"End of script with {accuracy['accuracy']} accuracy")
Overwriting accelerate_scripts/05_accelerate_base_code_some_code_in_one_process.py
%%time!accelerate launch accelerate_scripts/05_accelerate_base_code_some_code_in_one_process.py
100%|█████████████████████████████████████████| 176/176 [02:01<00:00, 1.45it/s]100%|███████████████████████████████████████████| 20/20 [00:06<00:00, 3.30it/s]Accuracy = 0.2166End of script with 0.2166 accuracyCPU times: user 1.33 s, sys: 195 ms, total: 1.52 sWall time: 2min 22s
Hemos mostrado un ejemplo de cómo imprimir en un solo proceso, y esto ha sido una manera de ejecutar procesos en un solo proceso. Pero si lo que quieres es solo imprimir en un solo proceso se puede usar el método print
de accelerate
. Vamos a ver el mismo ejemplo de antes con este método
%%writefile accelerate_scripts/06_accelerate_base_code_print_one_process.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdm# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])for i in range(EPOCHS):model.train()# progress_bar_train = progress_bar(dataloader["train"], parent=master_progress_bar)progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# master_progress_bar.child.comment = f'loss: {loss}'# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()# progress_bar_validation = progress_bar(dataloader["validation"], parent=master_progress_bar)progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()# print(f"Accuracy = {accuracy['accuracy']}")accelerator.print(f"Accuracy = {accuracy['accuracy']}")if accelerator.is_local_main_process:print(f"End of script with {accuracy['accuracy']} accuracy")
Writing accelerate_scripts/06_accelerate_base_code_print_one_process.py
Lo ejecutamos
%%time!accelerate launch accelerate_scripts/06_accelerate_base_code_print_one_process.py
Map: 100%|██████████████████████| 45000/45000 [00:02<00:00, 15433.52 examples/s]Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 11406.61 examples/s]Map: 100%|██████████████████████| 45000/45000 [00:02<00:00, 15036.87 examples/s]Map: 100%|██████████████████████| 50000/50000 [00:03<00:00, 14932.76 examples/s]Map: 100%|██████████████████████| 50000/50000 [00:03<00:00, 14956.60 examples/s]100%|█████████████████████████████████████████| 176/176 [02:00<00:00, 1.46it/s]100%|███████████████████████████████████████████| 20/20 [00:05<00:00, 3.33it/s]Accuracy = 0.2134End of script with 0.2134 accuracyCPU times: user 1.4 s, sys: 189 ms, total: 1.59 sWall time: 2min 27s
Ejecución de código en todos los procesos
Sin embargo hay código que debe ejecutarse en todos los procesos, por ejemplo si subimos los checkpoints al hub, así que aquí tenemos dos opciones, encapsular el código en una función y decorarla con accelerator.on_main_process
@accelerator.on_main_process
def do_my_thing():
"Something done once per server"
do_thing_once()
o meter el código dentro de un if accelerator.is_main_process
if accelerator.is_main_process:
repo.push_to_hub()
Como estamos haciendo entrenamientos solo para mostrar la librería accelerate
y el modelo que estamos entrenando no es bueno, no tiene sentido ahora subir los checkpoints al hub, así que voy a hacer un ejemplo con print
s
%%writefile accelerate_scripts/07_accelerate_base_code_some_code_in_all_process.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdm# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])@accelerator.on_local_main_processdef print_in_one_process(something):print(something)@accelerator.on_main_processdef print_in_all_processes(something):print(something)for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()print_in_one_process(f"Accuracy = {accuracy['accuracy']}")if accelerator.is_local_main_process:print(f"End of script with {accuracy['accuracy']} accuracy")print_in_all_processes(f"All process: Accuracy = {accuracy['accuracy']}")if accelerator.is_main_process:print(f"All process: End of script with {accuracy['accuracy']} accuracy")
Overwriting accelerate_scripts/06_accelerate_base_code_some_code_in_all_process.py
Lo ejecutamos a ver
%%time!accelerate launch accelerate_scripts/07_accelerate_base_code_some_code_in_all_process.py
Map: 100%|██████████████████████| 45000/45000 [00:03<00:00, 14518.44 examples/s]Map: 100%|██████████████████████| 45000/45000 [00:03<00:00, 14368.77 examples/s]Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 16466.33 examples/s]Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 14806.14 examples/s]Map: 100%|██████████████████████| 50000/50000 [00:03<00:00, 14253.33 examples/s]Map: 100%|██████████████████████| 50000/50000 [00:03<00:00, 14337.07 examples/s]100%|█████████████████████████████████████████| 176/176 [02:00<00:00, 1.46it/s]100%|███████████████████████████████████████████| 20/20 [00:05<00:00, 3.34it/s]Accuracy = 0.2092End of script with 0.2092 accuracyAll process: Accuracy = 0.2092All process: End of script with 0.2092 accuracyCPU times: user 1.42 s, sys: 216 ms, total: 1.64 sWall time: 2min 27s
Ejecución de código en el proceso X
Por último podemos especificar en qué proceso queremos ejecutar código, para esto hay que crear una función y decorarla con @accelerator.on_process(process_index=0)
@accelerator.on_process(process_index=0)
def do_my_thing():
"Something done on process index 0"
do_thing_on_index_zero()
o decorarla con @accelerator.on_local_process(local_process_idx=0)
@accelerator.on_local_process(local_process_index=0)
def do_my_thing():
"Something done on process index 0 on each server"
do_thing_on_index_zero_on_each_server()
Aquí he puesto el proceso 0, pero se puede poner cualquier número
%%writefile accelerate_scripts/08_accelerate_base_code_some_code_in_some_process.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdm# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])@accelerator.on_local_main_processdef print_in_one_process(something):print(something)@accelerator.on_main_processdef print_in_all_processes(something):print(something)@accelerator.on_process(process_index=0)def print_in_process_0(something):print("Process 0: " + something)@accelerator.on_local_process(local_process_index=1)def print_in_process_1(something):print("Process 1: " + something)for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()print_in_one_process(f"Accuracy = {accuracy['accuracy']}")if accelerator.is_local_main_process:print(f"End of script with {accuracy['accuracy']} accuracy")print_in_all_processes(f"All process: Accuracy = {accuracy['accuracy']}")if accelerator.is_main_process:print(f"All process: End of script with {accuracy['accuracy']} accuracy")print_in_process_0("End of process 0")print_in_process_1("End of process 1")
Overwriting accelerate_scripts/07_accelerate_base_code_some_code_in_some_process.py
Lo ejecutamos
%%time!accelerate launch accelerate_scripts/08_accelerate_base_code_some_code_in_some_process.py
Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 15735.58 examples/s]Map: 100%|██████████████████████| 50000/50000 [00:03<00:00, 14906.20 examples/s]100%|█████████████████████████████████████████| 176/176 [02:02<00:00, 1.44it/s]100%|███████████████████████████████████████████| 20/20 [00:06<00:00, 3.27it/s]Process 1: End of process 1Accuracy = 0.2128End of script with 0.2128 accuracyAll process: Accuracy = 0.2128All process: End of script with 0.2128 accuracyProcess 0: End of process 0CPU times: user 1.42 s, sys: 295 ms, total: 1.71 sWall time: 2min 37s
Sincronizar procesos
Si tenemos código que debe ejecutarse en todos los procesos, es interesante esperar a que termine en todos los procesos antes de hacer otra tarea, así que para ello usamos accelerator.wait_for_everyone()
Para verlo vamos a meter un retardo en una de las funciones de imprimir en un proceso
Además he puesto un break en el bucle de entrenamiento para que no esté mucho tiempo entrenando, que no es lo que ahora nos interesa
%%writefile accelerate_scripts/09_accelerate_base_code_sync_all_process.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdmimport time# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])@accelerator.on_local_main_processdef print_in_one_process(something):print(something)@accelerator.on_main_processdef print_in_all_processes(something):print(something)@accelerator.on_process(process_index=0)def print_in_process_0(something):time.sleep(2)print("Process 0: " + something)@accelerator.on_local_process(local_process_index=1)def print_in_process_1(something):print("Process 1: " + something)for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()breakmodel.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()print_in_one_process(f"Accuracy = {accuracy['accuracy']}")if accelerator.is_local_main_process:print(f"End of script with {accuracy['accuracy']} accuracy")print_in_all_processes(f"All process: Accuracy = {accuracy['accuracy']}")if accelerator.is_main_process:print(f"All process: End of script with {accuracy['accuracy']} accuracy")print_in_one_process("Printing with delay in process 0")print_in_process_0("End of process 0")print_in_process_1("End of process 1")accelerator.wait_for_everyone()print_in_one_process("End of script")
Overwriting accelerate_scripts/08_accelerate_base_code_sync_all_process.py
Lo ejecutamos
!accelerate launch accelerate_scripts/09_accelerate_base_code_sync_all_process.py
Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 14218.23 examples/s]Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 14666.25 examples/s]0%| | 0/176 [00:00<?, ?it/s]100%|███████████████████████████████████████████| 20/20 [00:05<00:00, 3.58it/s]Process 1: End of process 1Accuracy = 0.212End of script with 0.212 accuracyAll process: Accuracy = 0.212All process: End of script with 0.212 accuracyPrinting with delay in process 0Process 0: End of process 0End of script
Como se puede ver primero se ha impreso Process 1: End of process 1
y luego el resto, esto es porque el resto de prints se hacen o en el proceso 0 o en todos los procesos, así que hasta que no termine el delay de 2 segundos que hemos puesto no se ejecuta el resto de código
Guardar y cargar el state dict
Cuando entrenamos, a veces guardamos el estado para poder seguir en otro momento
Para guardar el estado tendremos que usar los métodos save_state()
y load_state()
%%writefile accelerate_scripts/10_accelerate_save_and_load_checkpoints.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdm# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")@accelerator.on_local_main_processdef print_something(something):print(something)EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()# Guardamos los pesosaccelerator.save_state("accelerate_scripts/checkpoints")print_something(f"Accuracy = {accuracy['accuracy']}")# Cargamos los pesosaccelerator.load_state("accelerate_scripts/checkpoints")
Overwriting accelerate_scripts/09_accelerate_save_and_load_checkpoints.py
Lo ejecutamos
!accelerate launch accelerate_scripts/10_accelerate_save_and_load_checkpoints.py
100%|█████████████████████████████████████████| 176/176 [01:58<00:00, 1.48it/s]100%|███████████████████████████████████████████| 20/20 [00:05<00:00, 3.40it/s]Accuracy = 0.2142
Guardar el modelo
Cuando se usó el método prepare
se envolvió el modelo para poder guardarlo en los dispositivos necesarios. Por lo que a la hora de guardarlo tenemos que usar el método save_model
que primero lo desenvuelve y luego lo guarda. Además si usamos el parámetro safe_serialization=True
se guardará el modelo como un safe tensor
%%writefile accelerate_scripts/11_accelerate_save_model.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdm# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")@accelerator.on_local_main_processdef print_something(something):print(something)EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()# Guardamos el modeloaccelerator.wait_for_everyone()accelerator.save_model(model, "accelerate_scripts/model", safe_serialization=True)print_something(f"Accuracy = {accuracy['accuracy']}")
Writing accelerate_scripts/11_accelerate_save_model.py
Lo ejecutamos
!accelerate launch accelerate_scripts/11_accelerate_save_model.py
100%|█████████████████████████████████████████| 176/176 [01:58<00:00, 1.48it/s]100%|███████████████████████████████████████████| 20/20 [00:05<00:00, 3.35it/s]Accuracy = 0.214
Guardar el modelo pretrained
En modelos que usan la librería transformers
debemos guardar el modelo con el método save_pretrained
para poder cargarlo con el método from_pretrained
. Antes de guardarlo hay que desenvolverlo con el método unwrap_model
%%writefile accelerate_scripts/12_accelerate_save_pretrained.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdm# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")@accelerator.on_local_main_processdef print_something(something):print(something)EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()# Guardamos el modelo pretrainedunwrapped_model = accelerator.unwrap_model(model)unwrapped_model.save_pretrained("accelerate_scripts/model_pretrained",is_main_process=accelerator.is_main_process,save_function=accelerator.save,)print_something(f"Accuracy = {accuracy['accuracy']}")
Writing accelerate_scripts/11_accelerate_save_pretrained.py
Lo ejecutamos
!accelerate launch accelerate_scripts/12_accelerate_save_pretrained.py
Map: 100%|██████████████████████| 45000/45000 [00:02<00:00, 15152.47 examples/s]Map: 100%|██████████████████████| 45000/45000 [00:02<00:00, 15119.13 examples/s]Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 12724.70 examples/s]Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 12397.49 examples/s]Map: 100%|██████████████████████| 50000/50000 [00:03<00:00, 15247.21 examples/s]Map: 100%|██████████████████████| 50000/50000 [00:03<00:00, 15138.03 examples/s]100%|█████████████████████████████████████████| 176/176 [01:59<00:00, 1.48it/s]100%|███████████████████████████████████████████| 20/20 [00:05<00:00, 3.37it/s]Accuracy = 0.21
Ahora lo podríamos cargar
from transformers import AutoModelcheckpoints = "accelerate_scripts/model_pretrained"tokenizer = AutoModel.from_pretrained(checkpoints)
Some weights of RobertaModel were not initialized from the model checkpoint at accelerate_scripts/model_pretrained and are newly initialized: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Entrenamiento en notebooks
Hasta ahora hemos visto cómo ejecutar scripts, pero si quieres ejecutar el código en un notebook, podemos escribir el mismo código de antes, pero encapsulado en una función
Primero importamos las librerás
import torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdmimport time# from accelerate import Accelerator
Ahora creamos la función
import torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdmimport time# from accelerate import Acceleratordef train_code(batch_size: int = 64):from accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = batch_sizedataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()accelerator.print(f"Accuracy = {accuracy['accuracy']}")
Para poder ejecutar el entrenamiento en el notebook usamos la funcion notebook_launcher
, al que le pasamos la función que queremos ejecutar, los argumentos de esa función y el número de GPUs en las que vamos a entrenar con la variable num_processes
from accelerate import notebook_launcher
args = (128,)
notebook_launcher(train_code, args, num_processes=2)
Entrenamiento en FP16
Cuando al principio configuramos accelerate
nos preguntó Do you wish to use FP16 or BF16 (mixed precision)?
y dijimos que no, así que ahora vamos a decirle que sí, que queremos en FP16
Hasta ahora hemos entrenado en FP32, lo que quiere decir que cada peso del modelo es un número en coma flotante de 32 bits, y ahora vamos a usar un número en coma flotante de 16 bits, es decir, el modelo va a ocupar menos. Por lo que van a pasar dos cosas, podremos usar un batch size mayor y además será más rápido
Primero volvemos a lanzar accelerate config
y le vamos a decir que queremos FP16
import torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdmimport time# from accelerate import Acceleratordef train_code(batch_size: int = 64):from accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = batch_sizedataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()accelerator.print(f"Accuracy = {accuracy['accuracy']}")from accelerate import notebook_launcherargs = (128,)notebook_launcher(train_code, args, num_processes=2)!accelerate config
Launching training on 2 GPUs.--------------------------------------------------------------------------------In which compute environment are you running?This machine--------------------------------------------------------------------------------multi-GPUHow many different machines will you use (use more than 1 for multi-node training)? [1]: 1Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: noDo you wish to optimize your script with torch dynamo?[yes/NO]:noDo you want to use DeepSpeed? [yes/NO]: noDo you want to use FullyShardedDataParallel? [yes/NO]: noDo you want to use Megatron-LM ? [yes/NO]: noHow many GPU(s) should be used for distributed training? [1]:2What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:0,1--------------------------------------------------------------------------------Do you wish to use FP16 or BF16 (mixed precision)?fp16accelerate configuration saved at ~/.cache/huggingface/accelerate/default_config.yaml
Ahora creamos un script para entrenar, con el mismo batch size de antes, para ver si tarda menos en entrenar
%%writefile accelerate_scripts/13_accelerate_base_code_fp16_bs128.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdm# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 128dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()accelerator.print(f"Accuracy = {accuracy['accuracy']}")
Overwriting accelerate_scripts/12_accelerate_base_code_fp16_bs128.py
Lo ejecutamos a ver cuanto tarda
%%time!accelerate launch accelerate_scripts/13_accelerate_base_code_fp16_bs128.py
Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 14983.76 examples/s]Map: 100%|██████████████████████| 50000/50000 [00:03<00:00, 14315.47 examples/s]100%|█████████████████████████████████████████| 176/176 [01:01<00:00, 2.88it/s]100%|███████████████████████████████████████████| 20/20 [00:02<00:00, 6.84it/s]Accuracy = 0.2094CPU times: user 812 ms, sys: 163 ms, total: 976 msWall time: 1min 27s
Cuando ejecutamos este entrenamiento en FP32 tardó unos 2 minutos y medio, y ahora más o menos 1 minuto y medio. Vamos a ver si ahora en vez de entrenar con un batch size de 128, lo hacemos con uno de 256
%%writefile accelerate_scripts/14_accelerate_base_code_fp16_bs256.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdm# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 256dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()accelerator.print(f"Accuracy = {accuracy['accuracy']}")
Overwriting accelerate_scripts/13_accelerate_base_code_fp16_bs256.py
Lo ejecutamos
%%time!accelerate launch accelerate_scripts/14_accelerate_base_code_fp16_bs256.py
Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 15390.30 examples/s]Map: 100%|████████████████████████| 5000/5000 [00:00<00:00, 14990.92 examples/s]100%|███████████████████████████████████████████| 88/88 [00:54<00:00, 1.62it/s]100%|███████████████████████████████████████████| 10/10 [00:02<00:00, 3.45it/s]Accuracy = 0.2236CPU times: user 670 ms, sys: 91.6 ms, total: 761 msWall time: 1min 12s
Ha bajado solo unos 15 segundos
Entrenamiento en BF16
Antes hemos entrenado en FP16 y ahora lo vamos a hacer en BF16, ¿Cuál es la diferencia?
Como podemos ver en la imagen, mientras que FP16 en comparación con FP32 tiene menos bits en la mantisa y el exponente, lo que hace que su rango sea mucho menor, BF16 en comparación con FP32 tiene el mismo número de bits del exponente pero menos en la mantisa, lo que hace que BF16 tenga el mismo rango de números que FP32, pero es menos preciso
Esto es beneficioso porque en FP16 algunos cálculos podrían dar números muy altos, que en formato FP16 no se podrían representar. Además hay ciertos dispositivos HW que están optimizados para este formato
Al igual que antes ejecutamos accelerate config
y le indicamos que queremos BF16
!accelerate config
--------------------------------------------------------------------------------In which compute environment are you running?This machine--------------------------------------------------------------------------------multi-GPUHow many different machines will you use (use more than 1 for multi-node training)? [1]: 1Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: noDo you wish to optimize your script with torch dynamo?[yes/NO]:noDo you want to use DeepSpeed? [yes/NO]: noDo you want to use FullyShardedDataParallel? [yes/NO]: noDo you want to use Megatron-LM ? [yes/NO]: noHow many GPU(s) should be used for distributed training? [1]:2What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:0,1--------------------------------------------------------------------------------Do you wish to use FP16 or BF16 (mixed precision)?bf16accelerate configuration saved at ~/.cache/huggingface/accelerate/default_config.yaml
Ahora ejecutamos el último script que habíamos creado, es decir con un batch size de 256
%%time!accelerate launch accelerate_scripts/14_accelerate_base_code_fp16_bs256.py
Map: 100%|██████████████████████| 50000/50000 [00:03<00:00, 14814.95 examples/s]Map: 100%|██████████████████████| 50000/50000 [00:03<00:00, 14506.83 examples/s]100%|███████████████████████████████████████████| 88/88 [00:51<00:00, 1.70it/s]100%|███████████████████████████████████████████| 10/10 [00:03<00:00, 3.21it/s]Accuracy = 0.2112CPU times: user 688 ms, sys: 144 ms, total: 832 msWall time: 1min 17s
Ha tardado un tiempo similar a lo que tardó antes, lo cual es normal, ya que hemos entrenado un modelo con pesos de 16 bits, al igual que antes
Entrenamiento en FP8
Ahora vamos a entrenar en formato FP8, que como su nombre indica, es un formato de coma flotante, donde cada peso tiene 8 bits, por lo que ejecutamos accelerate config
para decirle que queremos FP8
!accelerate config
--------------------------------------------------------------------------------In which compute environment are you running?This machine--------------------------------------------------------------------------------multi-GPUHow many different machines will you use (use more than 1 for multi-node training)? [1]: 1Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: noDo you wish to optimize your script with torch dynamo?[yes/NO]:noDo you want to use DeepSpeed? [yes/NO]: noDo you want to use FullyShardedDataParallel? [yes/NO]: noDo you want to use Megatron-LM ? [yes/NO]: noHow many GPU(s) should be used for distributed training? [1]:2What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:0,1--------------------------------------------------------------------------------Do you wish to use FP16 or BF16 (mixed precision)?fp8accelerate configuration saved at ~/.cache/huggingface/accelerate/default_config.yaml
Ahora ejecutamos el último script, el de batch size de 256
%%time!accelerate launch accelerate_scripts/14_accelerate_base_code_fp16_bs256.py
Traceback (most recent call last):File "/home/wallabot/Documentos/web/portafolio/posts/accelerate_scripts/13_accelerate_base_code_fp16_bs256.py", line 12, in <module>accelerator = Accelerator()^^^^^^^^^^^^^File "/home/wallabot/miniconda3/envs/nlp/lib/python3.11/site-packages/accelerate/accelerator.py", line 371, in __init__self.state = AcceleratorState(^^^^^^^^^^^^^^^^^File "/home/wallabot/miniconda3/envs/nlp/lib/python3.11/site-packages/accelerate/state.py", line 790, in __init__raise ValueError(ValueError: Using `fp8` precision requires `transformer_engine` or `MS-AMP` to be installed.Traceback (most recent call last):File "/home/wallabot/Documentos/web/portafolio/posts/accelerate_scripts/13_accelerate_base_code_fp16_bs256.py", line 12, in <module>accelerator = Accelerator()^^^^^^^^^^^^^File "/home/wallabot/miniconda3/envs/nlp/lib/python3.11/site-packages/accelerate/accelerator.py", line 371, in __init__self.state = AcceleratorState(^^^^^^^^^^^^^^^^^File "/home/wallabot/miniconda3/envs/nlp/lib/python3.11/site-packages/accelerate/state.py", line 790, in __init__raise ValueError(ValueError: Using `fp8` precision requires `transformer_engine` or `MS-AMP` to be installed.[2024-05-13 21:40:56,455] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 0 (pid: 501480) of binary: /home/wallabot/miniconda3/envs/nlp/bin/pythonTraceback (most recent call last):File "/home/wallabot/miniconda3/envs/nlp/bin/accelerate", line 8, in <module>sys.exit(main())^^^^^^File "/home/wallabot/miniconda3/envs/nlp/lib/python3.11/site-packages/accelerate/commands/accelerate_cli.py", line 46, in mainargs.func(args)File "/home/wallabot/miniconda3/envs/nlp/lib/python3.11/site-packages/accelerate/commands/launch.py", line 1048, in launch_commandmulti_gpu_launcher(args)File "/home/wallabot/miniconda3/envs/nlp/lib/python3.11/site-packages/accelerate/commands/launch.py", line 702, in multi_gpu_launcherdistrib_run.run(args)File "/home/wallabot/miniconda3/envs/nlp/lib/python3.11/site-packages/torch/distributed/run.py", line 803, in runelastic_launch(File "/home/wallabot/miniconda3/envs/nlp/lib/python3.11/site-packages/torch/distributed/launcher/api.py", line 135, in __call__return launch_agent(self._config, self._entrypoint, list(args))^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "/home/wallabot/miniconda3/envs/nlp/lib/python3.11/site-packages/torch/distributed/launcher/api.py", line 268, in launch_agentraise ChildFailedError(torch.distributed.elastic.multiprocessing.errors.ChildFailedError:============================================================accelerate_scripts/13_accelerate_base_code_fp16_bs256.py FAILED------------------------------------------------------------Failures:[1]:time : 2024-05-13_21:40:56host : wallabotrank : 1 (local_rank: 1)exitcode : 1 (pid: 501481)error_file: <N/A>traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html------------------------------------------------------------Root Cause (first observed failure):[0]:time : 2024-05-13_21:40:56host : wallabotrank : 0 (local_rank: 0)exitcode : 1 (pid: 501480)error_file: <N/A>traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html============================================================CPU times: user 65.1 ms, sys: 14.5 ms, total: 79.6 msWall time: 7.24 s
Como los pesos ahora son de 8 bits y ocupan la mitad de memoria vamos a subir el batch size a 512
%%writefile accelerate_scripts/15_accelerate_base_code_fp8_bs512.pyimport torchfrom torch.utils.data import DataLoaderfrom torch.optim import Adamfrom datasets import load_datasetfrom transformers import AutoTokenizer, AutoModelForSequenceClassificationimport evaluateimport tqdm# Importamos e inicializamos Acceleratorfrom accelerate import Acceleratoraccelerator = Accelerator()dataset = load_dataset("tweet_eval", "emoji")num_classes = len(dataset["train"].info.features["label"].names)max_len = 130checkpoints = "cardiffnlp/twitter-roberta-base-irony"tokenizer = AutoTokenizer.from_pretrained(checkpoints)def tokenize_function(dataset):return tokenizer(dataset["text"], max_length=max_len, padding="max_length", truncation=True, return_tensors="pt")tokenized_dataset = {"train": dataset["train"].map(tokenize_function, batched=True, remove_columns=["text"]),"validation": dataset["validation"].map(tokenize_function, batched=True, remove_columns=["text"]),"test": dataset["test"].map(tokenize_function, batched=True, remove_columns=["text"]),}tokenized_dataset["train"].set_format(type="torch", columns=['input_ids', 'attention_mask', 'label'])tokenized_dataset["validation"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])tokenized_dataset["test"].set_format(type="torch", columns=['label', 'input_ids', 'attention_mask'])BS = 512dataloader = {"train": DataLoader(tokenized_dataset["train"], batch_size=BS, shuffle=True),"validation": DataLoader(tokenized_dataset["validation"], batch_size=BS, shuffle=True),"test": DataLoader(tokenized_dataset["test"], batch_size=BS, shuffle=True),}model = AutoModelForSequenceClassification.from_pretrained(checkpoints)model.classifier.out_proj = torch.nn.Linear(in_features=model.classifier.out_proj.in_features, out_features=num_classes, bias=True)loss_function = torch.nn.CrossEntropyLoss()optimizer = Adam(model.parameters(), lr=5e-4)metric = evaluate.load("accuracy")EPOCHS = 1# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")device = accelerator.device# model.to(device)model, optimizer, dataloader["train"], dataloader["validation"] = accelerator.prepare(model, optimizer, dataloader["train"], dataloader["validation"])for i in range(EPOCHS):model.train()progress_bar_train = tqdm.tqdm(dataloader["train"], disable=not accelerator.is_local_main_process)for batch in progress_bar_train:optimizer.zero_grad()input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)outputs = model(input_ids=input_ids, attention_mask=attention_mask)loss = loss_function(outputs['logits'], labels)# loss.backward()accelerator.backward(loss)optimizer.step()model.eval()progress_bar_validation = tqdm.tqdm(dataloader["validation"], disable=not accelerator.is_local_main_process)for batch in progress_bar_validation:input_ids = batch["input_ids"]#.to(device)attention_mask = batch["attention_mask"]#.to(device)labels = batch["label"]#.to(device)with torch.no_grad():outputs = model(input_ids=input_ids, attention_mask=attention_mask)predictions = torch.argmax(outputs['logits'], axis=-1)# Recopilamos las predicciones de todos los dispositivospredictions = accelerator.gather_for_metrics(predictions)labels = accelerator.gather_for_metrics(labels)accuracy = metric.add_batch(predictions=predictions, references=labels)accuracy = metric.compute()accelerator.print(f"Accuracy = {accuracy['accuracy']}")
Writing accelerate_scripts/15_accelerate_base_code_fp8_bs512.py
Lo ejecutamos
%%time!accelerate launch accelerate_scripts/15_accelerate_base_code_fp8_bs512.py
Inferencia de modelos
Uso del ecosistema de Hugging Face
Vamos a ver cómo hacer inferencia de grandes modelos con la librería transformers
de hugging face.
Inferencia con pipeline
Si usamos el ecosistema de Hugging Face es muy sencillo, ya que todo se produce por debajo sin tener que hacer nosotros mucho. En el caso de usar pipeline
, que es la manera más sencilla de hacer inferencia con la librería transformers
, simplemente tenemos que decirle el modelo que queremos usar y muy importante, pasarle device_map="auto"
. Esto hará que por debajo accelerate
distribuya el modelo entre las distintas GPUs, RAM de la CPU o disco duro si es necesario
Hay más posibles valores para device_map
, que los veremos más adelante, pero de momento quédate con "auto"
.
Vamos a usar el modelo Llama3 8B
, que como su nombre indica es un modelo de unos 8 mil millones de parámetros, como cada parámetro por defecto está en formato FP32, que corresponde a 4 bytes (32 bits), eso quiere decir que si multiplicamos 8 mil millones de parámetros por 4 bytes, nos queda que necesitaría una GPU con unos 32 GB de VRAM.
En mi caso tengo 2 GPUs de 24 GB de VRAM, por lo que no entraría en una sola GPU. Pero gracias a poner device_map="auto"
, accelerate desitribuirá el modelo entre las dos GPUs y podré realizar la inferencia
%%time!accelerate launch accelerate_scripts/15_accelerate_base_code_fp8_bs512.py%%writefile accelerate_scripts/16_inference_with_pipeline.pyfrom transformers import pipelinecheckpoints = "meta-llama/Meta-Llama-3-8B-Instruct"generator = pipeline(model=checkpoints, device_map="auto")prompt = "Conoces accelerate de hugging face?"output = generator(prompt)print(output)
Overwriting accelerate_scripts/09_inference_with_pipeline.py
Ahora lo ejecutamos, solo que como pipeline usa por debajo accelerate, no necesitamos ejecutarlo con acelerate launch script.py
sino que con python script.py
vale
!python accelerate_scripts/16_inference_with_pipeline.py
Loading checkpoint shards: 100%|██████████████████| 4/4 [00:09<00:00, 2.27s/it]Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.[{'generated_text': 'Conoces accelerate de hugging face? ¿Qué es el modelo de lenguaje de transformers y cómo se utiliza en el marco de hugging face? ¿Cómo puedo utilizar modelos de lenguaje de transformers en mi aplicación? ¿Qué son los tokenizers y cómo se utilizan en el marco de hugging face? ¿Cómo puedo crear un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los datasets y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar datasets para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar finetuning para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los checkpoints y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar checkpoints para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los evaluadores y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar evaluadores para evaluar el rendimiento de un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los pre-trainados y cómo se utilizan en el marco de hugging face? ¿Cómo puedo utilizar pre-trainados para entrenar un modelo de lenguaje personalizado utilizando transformers y hugging face? ¿Qué son los finetuning'}]
Como se puede ver, no ha respondido, sino que ha seguido haciendo preguntas. Esto es porque Llama3 es un modelo de lenguaje que lo que hace es predecir el siguiente token, así que con el prompt que le he pasado, ha considerado que los siguientes mejores tokens son unos que corresponden a más preguntas. Lo cual tiene sentido, porque hay veces que la gente tiene dudas sobre un tema y genera muchas preguntas, así que para que nos conteste a la pregunta hay que condicionarle un poco
%%writefile accelerate_scripts/17_inference_with_pipeline_condition.pyfrom transformers import pipelinecheckpoints = "meta-llama/Meta-Llama-3-8B-Instruct"generator = pipeline(model=checkpoints, device_map="auto")prompt = "Conoces accelerate de hugging face?"messages = [{"role": "system","content": "Eres un chatbot amigable que siempre intenta solucionar las dudas",},{"role": "user", "content": f"{prompt}"},]output = generator(messages)print(output[0]['generated_text'][-1])
Overwriting accelerate_scripts/10_inference_with_pipeline_condition.py
Como ves se ha generado un mensaje con roles, condicionando el modelo y con el prompt
!python accelerate_scripts/17_inference_with_pipeline_condition.py
Loading checkpoint shards: 100%|██████████████████| 4/4 [00:09<00:00, 2.41s/it]Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.{'role': 'assistant', 'content': '¡Hola! Sí, conozco Accelerate de Hugging Face. Accelerate es una biblioteca de Python desarrollada por Hugging Face que se enfoca en simplificar y acelerar el entrenamiento y la evaluación de modelos de lenguaje en diferentes dispositivos y entornos. Con Accelerate, puedes entrenar modelos de lenguaje en diferentes plataformas y dispositivos, como GPUs, TPUs, CPUs y servidores, sin necesidad de cambiar el código de tu modelo. Esto te permite aprovechar al máximo la potencia de cálculo de tus dispositivos y reducir el tiempo de entrenamiento. Accelerate también ofrece varias características adicionales, como: * Soporte para diferentes frameworks de machine learning, como TensorFlow, PyTorch y JAX. * Integración con diferentes sistemas de almacenamiento y procesamiento de datos, como Amazon S3 y Google Cloud Storage. * Soporte para diferentes protocolos de comunicación, como HTTP y gRPC. * Herramientas para monitorear y depurar tus modelos en tiempo real. En resumen, Accelerate es una herramienta muy útil para desarrolladores de modelos de lenguaje que buscan simplificar y acelerar el proceso de entrenamiento y evaluación de sus modelos. ¿Tienes alguna pregunta específica sobre Accelerate o necesitas ayuda para implementarlo en tu proyecto?'}
Ahora la respuesta si responde nuestro prompt
Inferencia con AutoClass
Por último vamos a ver cómo hacer la inferencia solo con AutoClass
.
%%writefile accelerate_scripts/18_inference_with_autoclass.pyfrom transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamercheckpoints = "meta-llama/Meta-Llama-3-8B-Instruct"tokenizer = AutoTokenizer.from_pretrained(checkpoints, device_map="auto")model = AutoModelForCausalLM.from_pretrained(checkpoints, device_map="auto")streamer = TextStreamer(tokenizer)prompt = "Conoces accelerate de hugging face?"tokens_input = tokenizer([prompt], return_tensors="pt").to(model.device)_ = model.generate(**tokens_input, streamer=streamer, max_new_tokens=500, do_sample=True, top_k=50, top_p=0.95, temperature=0.7)
Overwriting accelerate_scripts/11_inference_with_autoclass.py
Como se puede ver, se ha creado el objeto streamer
que luego se le pasa al método generate
del modelo. Esto es útil para que se vaya imprimiendo cada palabra a medida que se va generando y no haya que esperar a que se genere toda la salida para imprimirla
!python accelerate_scripts/18_inference_with_autoclass.py
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.Loading checkpoint shards: 100%|██████████████████| 4/4 [00:09<00:00, 2.28s/it]Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.<|begin_of_text|>Conoces accelerate de hugging face? Si es así, puedes utilizar la biblioteca `transformers` de Hugging Face para crear un modelo de lenguaje que pueda predecir la siguiente palabra en una secuencia de texto.Aquí te muestro un ejemplo de cómo hacerlo:```import pandas as pdimport torchfrom transformers import AutoModelForSequenceClassification, AutoTokenizer# Cargar el modelo y el tokenizadormodel_name = "bert-base-uncased"model = AutoModelForSequenceClassification.from_pretrained(model_name)tokenizer = AutoTokenizer.from_pretrained(model_name)# Cargar el conjunto de datostrain_df = pd.read_csv("train.csv")test_df = pd.read_csv("test.csv")# Preprocesar los datostrain_texts = train_df["text"]train_labels = train_df["label"]test_texts = test_df["text"]# Convertir los textos en entradas para el modelotrain_encodings = tokenizer.batch_encode_plus(train_texts,add_special_tokens=True,max_length=512,return_attention_mask=True,return_tensors='pt')test_encodings = tokenizer.batch_encode_plus(test_texts,add_special_tokens=True,max_length=512,return_attention_mask=True,return_tensors='pt')# Crear un dataloader para entrenar el modelotrain_dataset = torch.utils.data.TensorDataset(train_encodings["input_ids"],train_encodings["attention_mask"],torch.tensor(train_labels))train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)# Entrenar el modelodevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")model.to(device)criterion = torch.nn.CrossEntropyLoss()optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)for epoch in range(5):model.train()total_loss = 0for batch in train_loader:input_ids = batch[0].to(device)attention_mask = batch[1].to(device)labels = batch[2].to(device)optimizer.zero_grad()outputs = model(input_ids, attention_mask=attention_mask, labels=labels)loss = criterion(outputs, labels)loss.backward()optimizer.step()total_loss += loss.item()print(f"Epoch {epoch+1}, Loss: {total
Uso pytorch
Normalmente la manera de hacer inferencias con pytorch es crear un modelo con los pesos inicializados aleatoriamente y a continuación cargar un state dict
con los pesos del modelo preentrenado, así que para obtener ese state dict
vamos a hacer primero una pequeña trampa y nos los vamos a descargar
import torchimport torchvision.models as modelsmodel = models.resnet152(weights=models.ResNet152_Weights.IMAGENET1K_V1)torch.save(model.state_dict(), 'accelerate_scripts/resnet152_pretrained.pth')
Downloading: "https://download.pytorch.org/models/resnet152-394f9c45.pth" to /home/maximo.fernandez/.cache/torch/hub/checkpoints/resnet152-394f9c45.pth100%|██████████| 230M/230M [02:48<00:00, 1.43MB/s]
Ahora que tenemos el state dict
vamos a hacer inferencia como se hace normalmente en pytorch
import torchimport torchvision.models as modelsdevice = "cuda" if torch.cuda.is_available() else "cpu" # Set deviceresnet152 = models.resnet152().to(device) # Create model with random weights and move to devicestate_dict = torch.load('accelerate_scripts/resnet152_pretrained.pth', map_location=device) # Load pretrained weights into device memoryresnet152.load_state_dict(state_dict) # Load this weights into the modelinput = torch.rand(1, 3, 224, 224).to(device) # Random image with batch size 1output = resnet152(input)output.shape
torch.Size([1, 1000])
Vamos a explicar qué ha pasado
- Cuando hemos hecho
resnet152 = models.resnet152().to(device)
se ha cargado una resnet152 con pesos aleatorios en la memoria de la GPU - Cuando hemos hecho
state_dict = torch.load('accelerate_scripts/resnet152_pretrained.pth', map_location=device)
se ha cargado un diccionario con los pesos entrenados en la memoria de la GPU - Cuando hemos hecho
resnet152.load_state_dict(state_dict)
se han asignado esos pesos preentrenados al modelo
Es decir se ha cargado dos veces el modelo en la memoria de la GPU
Te puedes estar preguntando por qué hemos hecho primero
model = models.resnet152(weights=models.ResNet152_Weights.IMAGENET1K_V1)
torch.save(model.state_dict(), 'accelerate_scripts/resnet152_pretrained.pth')
Para luego hacer
resnet152 = models.resnet152().to(device)
state_dict = torch.load('accelerate_scripts/resnet152_pretrained.pth', map_location=device)
resnet152.load_state_dict(state_dict)
Y por que no usamos directamente
model = models.resnet152(weights=models.ResNet152_Weights.IMAGENET1K_V1)
Y nos dejamos de guardar el state dict
para luego cargarlo. Bueno, pues porque Pytorch, por edbajo hace lo mismo que hemos hecho. Así que para poder ver todo el proceso hemos hecho en varias lineas lo que Pytorch hace en una
Esta manera de trabajar ha funcionado bien hasta ahora, mientras que los modelos tenían un tamaño manejable por las GPUs de usuario. Pero desde la llegada de los LLMs este enfoque no tiene sentido
Por ejemplo un modelo de 6B de parámetros ocuparía en la memoria 24 GB, y como se carga dos veces con esta manera de trabajar haría falta tener una GPU de 48 GB.
Así que para arreglar esto, la manera de cargar un modelo preentrenado de Pytorch es:
- Crear un modelo vacío con
init_empty_weights
que no ocupará RAM - Luego cargar los pesos con
load_checkpoint_and_dispatch
que cargará un punto de control dentro del modelo vacío y distribuirá los pesos para cada capa en todos los dispositivos que se tenga disponibles (GPU, CPU RAM y disco duro), gracias a ponerdevice_map="auto"
import torchimport torchvision.models as modelsfrom accelerate import init_empty_weights, load_checkpoint_and_dispatchwith init_empty_weights():resnet152 = models.resnet152()resnet152 = load_checkpoint_and_dispatch(resnet152, checkpoint='accelerate_scripts/resnet152_pretrained.pth', device_map="auto")device = "cuda" if torch.cuda.is_available() else "cpu"input = torch.rand(1, 3, 224, 224).to(device) # Random image with batch size 1output = resnet152(input)output.shape
torch.Size([1, 1000])
Cómo funciona accelerate por debajo
En este vídeo se puede ver gráficamente cómo funciona accelerate por debajo
Inicialización de un modelo vacío
Accelerate
crea el esqueleto de un modelo vacío mediante init_empty_weights
para que ocupe la menor cantidad de memoria posible
Por ejemplo, veamos cuanta RAM tengo ahora disponible en mi ordenador
import psutildef get_ram_info():ram = dict(psutil.virtual_memory()._asdict())print(f"Total RAM: {(ram['total']/1024/1024/1024):.2f} GB, Available RAM: {(ram['available']/1024/1024/1024):.2f} GB, Used RAM: {(ram['used']/1024/1024/1024):.2f} GB")get_ram_info()
Total RAM: 31.24 GB, Available RAM: 22.62 GB, Used RAM: 7.82 GB
Tengo unos 22 GB de RAM disponibles
Ahora vamos a intentar crear un modelo 5000x1000x1000 parámetros, es decir de 5B de parámetros, si cada parámetro está en FP32, supone 20 GB de RAM
import torchfrom torch import nnmodel = nn.Sequential(*[nn.Linear(5000, 1000) for _ in range(1000)])
Si volvemos a ver la RAM
import torchfrom torch import nnmodel = nn.Sequential(*[nn.Linear(5000, 1000) for _ in range(1000)])get_ram_info()
Total RAM: 31.24 GB, Available RAM: 3.77 GB, Used RAM: 26.70 GB
Como vemos ahora solo tenemos 3 GB de RAM disponibles
Ahora vamos a eliminar el modelo para liberar RAM
del modelget_ram_info()
Total RAM: 31.24 GB, Available RAM: 22.44 GB, Used RAM: 8.03 GB
Volvemos a tener unos 22 GB de RAM disponibles
Vamos ahora a usar init_empty_weights
de accelerate
y luego vemos la RAM
from accelerate import init_empty_weightswith init_empty_weights():model = nn.Sequential(*[nn.Linear(5000, 1000) for _ in range(1000)])get_ram_info()
Total RAM: 31.24 GB, Available RAM: 22.32 GB, Used RAM: 8.16 GB
Antes teníamos exactamente 22.44 GB libres y tras crear el modelo con init_empty_weights
tenemos 22.32 GB. El ahorro en RAM es enorme! Casi no se ha ocupado RAM para crear el modelo.
Esto se basa en el metadispositivo introducido en PyTorch 1.9, por lo que es importante que para usar accelerate
tengamos una versión de Pytorch posterior
Carga de los pesos
Una vez hemos inicializado el modelo tenemos que cargarle los pesos que lo hacemos mediante load_checkpoint_and_dispatch
que como su nombre indica carga los pesos y los envía al dispositivo o dispositivos que sea necesario