Tokens

Tokens Tokens

Tokenslink image 0

Ahora que están en auge los LLMs, no paramos de escuchar el número de tokens que admite cada modelo, pero ¿qué son los tokens? Son las unidades mínimas de representación de las palabras

Para explicar qué son los tokens, primero veámoslo con un ejemplo práctico, vamos a usar el tokenizador de OpenAI, llamado tiktoken.

Así que, primero instalamos el paquete:

pip install tiktoken
      

Una vez instalado creamos un tokenizador usando el modelo cl100k_base, que en el notebook de ejemplo How to count tokens with tiktoken explica que es el usado por los modelos gpt-4, gpt-3.5-turbo y text-embedding-ada-002

	
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
Copy

Ahora creamos una palabra de ejemplo tara tokenizarla

	
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
example_word = "breakdown"
Copy

Y la tokenizamos

	
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
example_word = "breakdown"
tokens = encoder.encode(example_word)
tokens
Copy
	
[9137, 2996]

Se ha dividido la palabra en 2 tokens, el 9137 y el 2996. Vamos a ver a qué palabras corresponden

	
word1 = encoder.decode([tokens[0]])
word2 = encoder.decode([tokens[1]])
word1, word2
Copy
	
('break', 'down')

El tokenizador de OpenAI ha dividido la palabra breakdown en las palabras break y down. Es decir, ha dividido la palabra en 2 más sencillas.

Esto es importante, ya que cuando se dice que un LLM admite x tokens no se refiere a que admite x palabras, sino a que admite x unidades mínimas de representación de las palabras.

Si tienes un texto y quieres ver el número de tokens que tiene para el tokenizador de OpenAI, puedes verlo en la página Tokenizer, que muestra cada token en un color diferente

tokenizer

Hemos visto el tokenizador de OpenAI, pero cada LLM podrá usar otro

Como hemos dicho, los tokens son las unidades mínimas de representación de las palabras, así que vamos a ver cuántos tokens distintos tiene tiktoken

	
n_vocab = encoder.n_vocab
print(f"Vocab size: {n_vocab}")
Copy
	
Vocab size: 100277

Vamos a ver cómo tokeniza otro tipo de palabras

	
def encode_decode(word):
tokens = encoder.encode(word)
decode_tokens = []
for token in tokens:
decode_tokens.append(encoder.decode([token]))
return tokens, decode_tokens
Copy
	
def encode_decode(word):
tokens = encoder.encode(word)
decode_tokens = []
for token in tokens:
decode_tokens.append(encoder.decode([token]))
return tokens, decode_tokens
word = "dog"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "tomorrow..."
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "artificial intelligence"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "Python"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "12/25/2023"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "😊"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
Copy
	
Word: dog ==> tokens: [18964], decode_tokens: ['dog']
Word: tomorrow... ==> tokens: [38501, 7924, 1131], decode_tokens: ['tom', 'orrow', '...']
Word: artificial intelligence ==> tokens: [472, 16895, 11478], decode_tokens: ['art', 'ificial', ' intelligence']
Word: Python ==> tokens: [31380], decode_tokens: ['Python']
Word: 12/25/2023 ==> tokens: [717, 14, 914, 14, 2366, 18], decode_tokens: ['12', '/', '25', '/', '202', '3']
Word: 😊 ==> tokens: [76460, 232], decode_tokens: ['�', '�']

Por último vamos a verlo con palabras en otro idioma

	
word = "perro"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "perra"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "mañana..."
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "inteligencia artificial"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "Python"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "12/25/2023"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "😊"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
Copy
	
Word: perro ==> tokens: [716, 299], decode_tokens: ['per', 'ro']
Word: perra ==> tokens: [79, 14210], decode_tokens: ['p', 'erra']
Word: mañana... ==> tokens: [1764, 88184, 1131], decode_tokens: ['ma', 'ñana', '...']
Word: inteligencia artificial ==> tokens: [396, 39567, 8968, 21075], decode_tokens: ['int', 'elig', 'encia', ' artificial']
Word: Python ==> tokens: [31380], decode_tokens: ['Python']
Word: 12/25/2023 ==> tokens: [717, 14, 914, 14, 2366, 18], decode_tokens: ['12', '/', '25', '/', '202', '3']
Word: 😊 ==> tokens: [76460, 232], decode_tokens: ['�', '�']

Pdemos ver para palabras similares, en español se generan más tokens que en inglés, por lo que para un mismo texto, con un número similar de palabras, el número de tokens será mayor en español que en inglés

Seguir leyendo

Últimos posts -->

¿Has visto estos proyectos?

Subtify

Subtify Subtify

Generador de subtítulos para videos en el idioma que desees. Además a cada persona le pone su subtítulo de un color

Ver todos los proyectos -->

¿Quieres aplicar la IA en tu proyecto? Contactame!

¿Quieres mejorar con estos tips?

Últimos tips -->

Usa esto en local

Los espacios de Hugging Face nos permite ejecutar modelos con demos muy sencillas, pero ¿qué pasa si la demo se rompe? O si el usuario la elimina? Por ello he creado contenedores docker con algunos espacios interesantes, para poder usarlos de manera local, pase lo que pase. De hecho, es posible que si pinchas en alún botón de ver proyecto te lleve a un espacio que no funciona.

Flow edit

Flow edit Flow edit

Edita imágenes con este modelo de Flow. Basándose en SD3 o FLUX puedes editar cualquier imagen y generar nuevas

FLUX.1-RealismLora

FLUX.1-RealismLora FLUX.1-RealismLora
Ver todos los contenedores -->

¿Quieres aplicar la IA en tu proyecto? Contactame!

¿Quieres entrenar tu modelo con estos datasets?

short-jokes-dataset

Dataset de chistes en inglés

opus100

Dataset con traducciones de inglés a español

netflix_titles

Dataset con películas y series de Netflix

Ver más datasets -->