Tokens

Tokens Tokens

Tokenslink image 1

Now that LLLMs are on the rise, we keep hearing about the number of tokenss supported by each model, but what are tokenss? They are the minimum units of representation of words.

This notebook has been automatically translated to make it accessible to more people, please let me know if you see any typos.

To explain what tokenss are, lets first see it with a practical example, lets use the OpenAI tokenizer, called tiktoken.

So, first we install the package:

pip install tiktoken
      ```
      

Once installed we create a tokenizer using the cl100k_base model, which in the example notebook How to count tokens with tiktoken explains that it is the one used by the gpt-4, gpt-3.5-turbo and text-embedding-ada-002 models.

	
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
Copy

Now we create a sample word tara tokenize it

	
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
example_word = "breakdown"
Copy

And we tokenize it

	
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
example_word = "breakdown"
tokens = encoder.encode(example_word)
tokens
Copy
	
[9137, 2996]

The word has been divided into 2 tokens, the 9137 and the 2996. Let`s see which words they correspond to

	
word1 = encoder.decode([tokens[0]])
word2 = encoder.decode([tokens[1]])
word1, word2
Copy
	
('break', 'down')

The OpenAI tokenizer has split the word breakdown into the words break and down. That is, it has split the word into 2 simpler words.

This is important, because when it is said that a LLM supports x tokens it does not mean that it supports x words, but that it supports x minimum units of word representation.

If you have a text and want to see the number of tokens it has for the OpenAI tokenizer, you can see it on the Tokenizer page, which shows each token in a different color.

tokenizer

We have seen the OpenAI tokenizer, but each LLM will be able to use another one.

As we have said, tokenss are the minimum units of representation of words, so lets see how many different tokenstiktoken` has.

	
n_vocab = encoder.n_vocab
print(f"Vocab size: {n_vocab}")
Copy
	
Vocab size: 100277

Let's see how tokenize other types of words

	
def encode_decode(word):
tokens = encoder.encode(word)
decode_tokens = []
for token in tokens:
decode_tokens.append(encoder.decode([token]))
return tokens, decode_tokens
Copy
	
def encode_decode(word):
tokens = encoder.encode(word)
decode_tokens = []
for token in tokens:
decode_tokens.append(encoder.decode([token]))
return tokens, decode_tokens
word = "dog"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "tomorrow..."
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "artificial intelligence"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "Python"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "12/25/2023"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "😊"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
Copy
	
Word: dog ==> tokens: [18964], decode_tokens: ['dog']
Word: tomorrow... ==> tokens: [38501, 7924, 1131], decode_tokens: ['tom', 'orrow', '...']
Word: artificial intelligence ==> tokens: [472, 16895, 11478], decode_tokens: ['art', 'ificial', ' intelligence']
Word: Python ==> tokens: [31380], decode_tokens: ['Python']
Word: 12/25/2023 ==> tokens: [717, 14, 914, 14, 2366, 18], decode_tokens: ['12', '/', '25', '/', '202', '3']
Word: 😊 ==> tokens: [76460, 232], decode_tokens: ['�', '�']

Finally, let's look at it with words in another language

	
word = "perro"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "perra"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "mañana..."
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "inteligencia artificial"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "Python"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "12/25/2023"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "😊"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
Copy
	
Word: perro ==> tokens: [716, 299], decode_tokens: ['per', 'ro']
Word: perra ==> tokens: [79, 14210], decode_tokens: ['p', 'erra']
Word: mañana... ==> tokens: [1764, 88184, 1131], decode_tokens: ['ma', 'ñana', '...']
Word: inteligencia artificial ==> tokens: [396, 39567, 8968, 21075], decode_tokens: ['int', 'elig', 'encia', ' artificial']
Word: Python ==> tokens: [31380], decode_tokens: ['Python']
Word: 12/25/2023 ==> tokens: [717, 14, 914, 14, 2366, 18], decode_tokens: ['12', '/', '25', '/', '202', '3']
Word: 😊 ==> tokens: [76460, 232], decode_tokens: ['�', '�']

We can see that for similar words, more tokens are generated in Spanish than in English, so that for the same text, with a similar number of words, the number of tokens will be higher in Spanish than in English.

Continue reading

Last posts -->

Have you seen these projects?

Subtify

Subtify Subtify

Subtitle generator for videos in the language you want. Also, it puts a different color subtitle to each person

View all projects -->

Do you want to apply AI in your project? Contact me!

Do you want to improve with these tips?

Last tips -->

Use this locally

Hugging Face spaces allow us to run models with very simple demos, but what if the demo breaks? Or if the user deletes it? That's why I've created docker containers with some interesting spaces, to be able to use them locally, whatever happens. In fact, if you click on any project view button, it may take you to a space that doesn't work.

Flow edit

Flow edit Flow edit

FLUX.1-RealismLora

FLUX.1-RealismLora FLUX.1-RealismLora
View all containers -->

Do you want to apply AI in your project? Contact me!

Do you want to train your model with these datasets?

short-jokes-dataset

Dataset with jokes in English

opus100

Dataset with translations from English to Spanish

netflix_titles

Dataset with Netflix movies and series

View more datasets -->