Conda

Conda Conda

Condalink image 18

Quando trabalhamos com ciência de dados, inteligência artificial, aprendizado profundo, ou como você quiser chamar, vamos fazer vários projetos. E talvez seja necessário instalar, por exemplo, a versão 11.6 do cuda em alguns projetos e a 11.8 em outros. E, nesses casos, eu o aconselho a nunca brigar com o cuda, pois ele sempre sai na frente.

Portanto, é melhor criar ambientes separados para cada projeto. Dessa forma, você pode instalar o que quiser em cada ambiente e não globalmente. E, dessa forma, você não terá problemas com incompatibilidades de versões de bibliotecas.

Para criar ambientes, o python vem com o venv por padrão, que é o seu ambiente virtual. Mas recomendo que você utilize o conda para criar seus ambientes virtuais, pois além de criar ambientes virtuais, ele também é um gerenciador de pacotes, e é um gerenciador de pacotes melhor que o pip.

Esta não é uma postagem explicando o conda, portanto você não descobrirá como instalá-lo ou como utilizá-lo. É uma postagem sobre as vantagens de usar o conda e também sobre o uso do mamba (que explicaremos mais tarde).

Este caderno foi traduzido automaticamente para torná-lo acessível a mais pessoas, por favor me avise se você vir algum erro de digitação..

Criarei três ambientes conda diferentes, um será chamado pip_env, um conda_env e um mamba_env.

Conda vs PIPlink image 19

pip_envlink image 20

Criarei um novo ambiente chamado pip_env.

	
!conda create -n pip_env
Copy

No ambiente pip_env, instalarei o pandas.

	
!conda create -n pip_env
# pip_env
!pip install pandas
Copy
	
Collecting pandas
Using cached pandas-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.3 MB)
Requirement already satisfied: numpy>=1.21.0 in /home/wallabot/miniconda3/envs/pip_env/lib/python3.10/site-packages (from pandas) (1.24.3)
Requirement already satisfied: python-dateutil>=2.8.2 in /home/wallabot/miniconda3/envs/pip_env/lib/python3.10/site-packages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /home/wallabot/miniconda3/envs/pip_env/lib/python3.10/site-packages (from pandas) (2023.3)
Requirement already satisfied: tzdata>=2022.1 in /home/wallabot/miniconda3/envs/pip_env/lib/python3.10/site-packages (from pandas) (2023.3)
Requirement already satisfied: six>=1.5 in /home/wallabot/miniconda3/envs/pip_env/lib/python3.10/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
Installing collected packages: pandas
Successfully installed pandas-2.0.1

Como você pode ver no texto que apareceu ao instalar o pandas, ele depende do numpy, portanto, ele o instala em sua versão 1.24.3. Mas se, por qualquer motivo, precisarmos do numpy em sua versão 1.19, se tentarmos instalá-lo, receberemos um erro

	
# pip_env
!pip install numpy==1.19.0
Copy
	
Collecting numpy==1.19.0
Using cached numpy-1.19.0.zip (7.3 MB)
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Building wheels for collected packages: numpy
Building wheel for numpy (pyproject.toml) ... error
error: subprocess-exited-with-error
× Building wheel for numpy (pyproject.toml) did not run successfully.
exit code: 1
╰─> [1113 lines of output]
Running from numpy source directory.
Cythonizing sources
numpy/random/_bounded_integers.pxd.in has not changed
numpy/random/_bounded_integers.pyx.in has not changed
numpy/random/_philox.pyx has not changed
numpy/random/_mt19937.pyx has not changed
numpy/random/_sfc64.pyx has not changed
numpy/random/mtrand.pyx has not changed
numpy/random/_common.pyx has not changed
Processing numpy/random/_bounded_integers.pyx
/tmp/pip-install-ck7a9pm3/numpy_29fbb9718a2c432e9d67310f12d6c54b/tools/cythonize.py:73: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
required_version = LooseVersion('0.29.14')
/tmp/pip-install-ck7a9pm3/numpy_29fbb9718a2c432e9d67310f12d6c54b/tools/cythonize.py:75: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
...
note: This error originates from a subprocess, and is likely not a problem with pip.
ERROR: Failed building wheel for numpy
Failed to build numpy
ERROR: Could not build wheels for numpy, which is required to install pyproject.toml-based projects

Recebemos um erro e, se verificarmos a versão do numpy que temos, veremos que ainda estamos na versão 1.24.3.

	
# pip_env
import numpy as np
np.__version__
Copy
	
'1.24.3'

E vemos qual versão do pandas temos

	
# pip_env
import pandas as pd
pd.__version__
Copy
	
'2.0.1'

conda_envlink image 21

Para resolver esse conflito, podemos usar o conda, eu crio um novo ambiente chamado conda_env.

	
!conda create -n conda_env
Copy

e agora dizemos a ele que queremos instalar o numpy na versão 1.19 e o pandas, e o conda procurará uma maneira de fazer isso.

	
!conda create -n conda_env
# conda_env
!conda install -y numpy=1.19 pandas
Copy
	
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Collecting package metadata (repodata.json): done
Solving environment: done
## Package Plan ##
environment location: /home/wallabot/miniconda3/envs/conda_env
added / updated specs:
- numpy=1.19
- pandas
The following packages will be downloaded:
package | build
---------------------------|-----------------
ca-certificates-2023.01.10 | h06a4308_0 120 KB
certifi-2021.5.30 | py36h06a4308_0 139 KB
intel-openmp-2022.1.0 | h9e868ea_3769 4.5 MB
mkl-2020.2 | 256 138.3 MB
mkl-service-2.3.0 | py36he8ac12f_0 52 KB
mkl_fft-1.3.0 | py36h54f3939_0 170 KB
mkl_random-1.1.1 | py36h0573a6f_0 327 KB
numpy-1.19.2 | py36h54aff64_0 22 KB
numpy-base-1.19.2 | py36hfa32c7d_0 4.1 MB
pandas-1.1.5 | py36ha9443f7_0 8.2 MB
pytz-2021.3 | pyhd3eb1b0_0 171 KB
------------------------------------------------------------
Total: 156.1 MB
...
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

Ele parece ter conseguido, vamos ver

	
# conda_env
import numpy as np
np.__version__
Copy
	
'1.19.2'
	
# conda_env
import pandas as pd
pd.__version__
Copy
	
'1.1.5'

Podemos ver que ele conseguiu instalar ambos, só que, para resolver os conflitos, ele instalou o pandas em sua versão 1.1.5, em vez da versão 2.0.1 que o pip havia instalado.

Mamba vs condalink image 22

Agora que já vimos que o conda é melhor na resolução de conflitos, vamos ver a diferença entre o mamba e o conda. O conda, como vimos, é muito bom na resolução de conflitos, mas tem o problema de ser lento na instalação de pacotes, pois instala as dependências em série, uma após a outra. Graças ao mamba teremos os mesmos benefícios do conda, só que as dependências serão instaladas em paralelo, fazendo uso dos kernels que temos em nosso micro.

conda_envlink image 23

Vamos permanecer no ambiente conda_env e ver quanto tempo leva para instalar o pytorch. Ao colocar time antes de um comando, veremos quanto tempo leva para executar

	
# conda_env
!time conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
Copy
	
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done
## Package Plan ##
environment location: /home/wallabot/miniconda3/envs/conda_env
added / updated specs:
- pytorch
- pytorch-cuda=11.8
- torchaudio
- torchvision
The following packages will be downloaded:
package | build
---------------------------|-----------------
bzip2-1.0.8 | h7b6447c_0 78 KB
cuda-cudart-11.8.89 | 0 197 KB nvidia
cuda-cupti-11.8.87 | 0 25.3 MB nvidia
cuda-libraries-11.8.0 | 0 1 KB nvidia
cuda-nvrtc-11.8.89 | 0 19.1 MB nvidia
cuda-nvtx-11.8.86 | 0 57 KB nvidia
cuda-runtime-11.8.0 | 0 1 KB nvidia
cudatoolkit-11.3.1 | ha36c431_9 815.2 MB nvidia
dataclasses-0.8 | pyh4f3eec9_6 22 KB
libcublas-11.11.3.6 | 0 364.0 MB nvidia
libcufft-10.9.0.58 | 0 142.8 MB nvidia
libcufile-1.6.1.9 | 0 764 KB nvidia
libcurand-10.3.2.106 | 0 51.7 MB nvidia
libcusolver-11.4.1.48 | 0 96.5 MB nvidia
libcusparse-11.7.5.86 | 0 176.3 MB nvidia
libnpp-11.8.0.86 | 0 147.8 MB nvidia
libnvjpeg-11.9.0.86 | 0 2.4 MB nvidia
olefile-0.46 | py36_0 48 KB
openjpeg-2.4.0 | h3ad879b_0 331 KB
pillow-8.3.1 | py36h2c7a002_0 637 KB
pytorch-1.10.2 |py3.6_cuda11.3_cudnn8.2.0_0 1.21 GB pytorch
pytorch-cuda-11.8 | h7e8668a_3 7 KB pytorch
torchaudio-0.10.2 | py36_cu113 4.5 MB pytorch
torchvision-0.11.3 | py36_cu113 30.4 MB pytorch
typing_extensions-4.1.1 | pyh06a4308_0 28 KB
------------------------------------------------------------
Total: 3.04 GB
...
Preparing transaction: done
Verifying transaction: done
Executing transaction: / By downloading and using the CUDA Toolkit conda packages, you accept the terms and conditions of the CUDA End User License Agreement (EULA): https://docs.nvidia.com/cuda/eula/index.html
done
conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch 294,42s user 18,01s system 187% cpu 2:46,42 total

Vemos que levou 294,42 segundos, cerca de 4,9 minutos, quase 5 minutos.

mamba_envlink image 24

Agora vamos reinstalar o pytorch, mas com o mamba. Primeiro, criamos um ambiente chamado mamba_env.

	
!conda create -n mamba_env
Copy

Para instalar o mamba, faça o download em [mambaforge] (https://github.com/conda-forge/miniforge#mambaforge) e instale-o.

Agora vamos reinstalar o pytorch no mamba_env.

	
!conda create -n mamba_env
# mamba_env
!time mamba install -y pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
Copy
	
__ __ __ __
/ \ / \ / \ / \
/ \/ \/ \/ \
███████████████/ /██/ /██/ /██/ /████████████████████████
/ / \ / \ / \ / \ \____
/ / \_/ \_/ \_/ \ o \__,
/ _/ \_____/ `
|/
███╗ ███╗ █████╗ ███╗ ███╗██████╗ █████╗
████╗ ████║██╔══██╗████╗ ████║██╔══██╗██╔══██╗
██╔████╔██║███████║██╔████╔██║██████╔╝███████║
██║╚██╔╝██║██╔══██║██║╚██╔╝██║██╔══██╗██╔══██║
██║ ╚═╝ ██║██║ ██║██║ ╚═╝ ██║██████╔╝██║ ██║
╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝
mamba (1.3.1) supported by @QuantStack
GitHub: https://github.com/mamba-org/mamba
Twitter: https://twitter.com/QuantStack
█████████████████████████████████████████████████████████████
Looking for: ['pytorch', 'torchvision', 'torchaudio', 'pytorch-cuda=11.8']
warning libmamba Could not parse state file: Could not load cache state: [json.exception.type_error.302] type must be string, but is null
warning libmamba Could not parse state file: Could not load cache state: [json.exception.type_error.302] type must be string, but is null
warning libmamba Could not parse state file: Could not load cache state: [json.exception.type_error.302] type must be string, but is null
warning libmamba Could not parse state file: Could not load cache state: [json.exception.type_error.302] type must be string, but is null
[+] 0.0s
[+] 0.1s
pytorch/linux-64 ━━━━━━━━━━━╸━━━━━━━━━━━━━ 0.0 B / ??.?MB @ ??.?MB/s 0.1s
pytorch/noarch ━━━╸━━━━━━━━━━━━━━━╸━━━━━ 0.0 B / ??.?MB @ ??.?MB/s 0.1s
nvidia/linux-64 ━━━━━━━━━╸━━━━━━━━━━━━━━━ 0.0 B / ??.?MB @ ??.?MB/s 0.1s
nvidia/noarch ━━━━━━━━╸━━━━━━━━━━━━━━━━ 0.0 B / ??.?MB @ ??.?MB/s 0.1s
pkgs/main/linux-64 ━━━━━━━━━━━━━━━╸━━━━━━━━━ 0.0 B / ??.?MB @ ??.?MB/s 0.1spkgs/main/linux-64 No change
pkgs/r/noarch No change
pytorch/noarch 10.1kB @ 58.3kB/s 0.2s
nvidia/noarch 3.4kB @ 18.7kB/s 0.2s
pkgs/main/noarch No change
[+] 0.2s
pytorch/linux-64 ━━━━━━━━━━━━━━╸━━━━━━━━━━━━ 0.0 B / ??.?MB @ ??.?MB/s 0.2s
nvidia/linux-64 ━━━━━━━━━━━━━╸━━━━━━━━━━━━━ 0.0 B / ??.?MB @ ??.?MB/s 0.2s
pkgs/r/linux-64 ━━━━━━━━━━━━╸━━━━━━━━━━━━━━ 0.0 B / ??.?MB @ ??.?MB/s 0.0spytorch/linux-64 163.4kB @ 801.5kB/s 0.2s
pkgs/r/linux-64 No change
nvidia/linux-64 120.2kB @ 566.5kB/s 0.2s
Pinned packages:
- python 3.10.*
Transaction
Prefix: /home/wallabot/miniconda3/envs/mamba_env2
Updating specs:
- pytorch
- torchvision
- torchaudio
- pytorch-cuda=11.8
- ca-certificates
- certifi
- openssl
Package Version Build Channel Size
─────────────────────────────────────────────────────────────────────────────────────────────────
Install:
─────────────────────────────────────────────────────────────────────────────────────────────────
+ blas 1.0 mkl pkgs/main/linux-64 Cached
+ brotlipy 0.7.0 py310h7f8727e_1002 pkgs/main/linux-64 Cached
+ cffi 1.15.1 py310h5eee18b_3 pkgs/main/linux-64 Cached
+ charset-normalizer 2.0.4 pyhd3eb1b0_0 pkgs/main/noarch Cached
+ cryptography 39.0.1 py310h9ce1e76_0 pkgs/main/linux-64 Cached
+ cuda-cudart 11.8.89 0 nvidia/linux-64 Cached
+ cuda-cupti 11.8.87 0 nvidia/linux-64 Cached
+ cuda-libraries 11.8.0 0 nvidia/linux-64 Cached
+ cuda-nvrtc 11.8.89 0 nvidia/linux-64 Cached
+ cuda-nvtx 11.8.86 0 nvidia/linux-64 Cached
+ cuda-runtime 11.8.0 0 nvidia/linux-64 Cached
+ ffmpeg 4.3 hf484d3e_0 pytorch/linux-64 Cached
+ filelock 3.9.0 py310h06a4308_0 pkgs/main/linux-64 Cached
+ freetype 2.12.1 h4a9f257_0 pkgs/main/linux-64 Cached
+ giflib 5.2.1 h5eee18b_3 pkgs/main/linux-64 Cached
+ gmp 6.2.1 h295c915_3 pkgs/main/linux-64 Cached
+ gmpy2 2.1.2 py310heeb90bb_0 pkgs/main/linux-64 Cached
+ gnutls 3.6.15 he1e5248_0 pkgs/main/linux-64 Cached
+ idna 3.4 py310h06a4308_0 pkgs/main/linux-64 Cached
+ intel-openmp 2021.4.0 h06a4308_3561 pkgs/main/linux-64 Cached
+ jinja2 3.1.2 py310h06a4308_0 pkgs/main/linux-64 Cached
+ jpeg 9e h5eee18b_1 pkgs/main/linux-64 Cached
+ lame 3.100 h7b6447c_0 pkgs/main/linux-64 Cached
+ lcms2 2.12 h3be6417_0 pkgs/main/linux-64 Cached
+ lerc 3.0 h295c915_0 pkgs/main/linux-64 Cached
+ libcublas 11.11.3.6 0 nvidia/linux-64 Cached
+ libcufft 10.9.0.58 0 nvidia/linux-64 Cached
+ libcufile 1.6.1.9 0 nvidia/linux-64 Cached
+ libcurand 10.3.2.106 0 nvidia/linux-64 Cached
+ libcusolver 11.4.1.48 0 nvidia/linux-64 Cached
+ libcusparse 11.7.5.86 0 nvidia/linux-64 Cached
+ libdeflate 1.17 h5eee18b_0 pkgs/main/linux-64 Cached
+ libiconv 1.16 h7f8727e_2 pkgs/main/linux-64 Cached
+ libidn2 2.3.2 h7f8727e_0 pkgs/main/linux-64 Cached
+ libnpp 11.8.0.86 0 nvidia/linux-64 Cached
+ libnvjpeg 11.9.0.86 0 nvidia/linux-64 Cached
+ libpng 1.6.39 h5eee18b_0 pkgs/main/linux-64 Cached
+ libtasn1 4.19.0 h5eee18b_0 pkgs/main/linux-64 Cached
+ libtiff 4.5.0 h6a678d5_2 pkgs/main/linux-64 Cached
+ libunistring 0.9.10 h27cfd23_0 pkgs/main/linux-64 Cached
+ libwebp 1.2.4 h11a3e52_1 pkgs/main/linux-64 Cached
+ libwebp-base 1.2.4 h5eee18b_1 pkgs/main/linux-64 Cached
+ lz4-c 1.9.4 h6a678d5_0 pkgs/main/linux-64 Cached
+ markupsafe 2.1.1 py310h7f8727e_0 pkgs/main/linux-64 Cached
+ mkl 2021.4.0 h06a4308_640 pkgs/main/linux-64 Cached
+ mkl-service 2.4.0 py310h7f8727e_0 pkgs/main/linux-64 Cached
+ mkl_fft 1.3.1 py310hd6ae3a3_0 pkgs/main/linux-64 Cached
+ mkl_random 1.2.2 py310h00e6091_0 pkgs/main/linux-64 Cached
+ mpc 1.1.0 h10f8cd9_1 pkgs/main/linux-64 Cached
+ mpfr 4.0.2 hb69a4c5_1 pkgs/main/linux-64 Cached
+ mpmath 1.2.1 py310h06a4308_0 pkgs/main/linux-64 Cached
+ nettle 3.7.3 hbbd107a_1 pkgs/main/linux-64 Cached
+ networkx 2.8.4 py310h06a4308_1 pkgs/main/linux-64 Cached
+ numpy 1.24.3 py310hd5efca6_0 pkgs/main/linux-64 11kB
+ numpy-base 1.24.3 py310h8e6c178_0 pkgs/main/linux-64 7MB
+ openh264 2.1.1 h4ff587b_0 pkgs/main/linux-64 Cached
+ pillow 9.4.0 py310h6a678d5_0 pkgs/main/linux-64 Cached
+ pycparser 2.21 pyhd3eb1b0_0 pkgs/main/noarch Cached
+ pyopenssl 23.0.0 py310h06a4308_0 pkgs/main/linux-64 Cached
+ pysocks 1.7.1 py310h06a4308_0 pkgs/main/linux-64 Cached
+ pytorch 2.0.0 py3.10_cuda11.8_cudnn8.7.0_0 pytorch/linux-64 2GB
+ pytorch-cuda 11.8 h7e8668a_3 pytorch/linux-64 Cached
+ pytorch-mutex 1.0 cuda pytorch/noarch Cached
+ requests 2.29.0 py310h06a4308_0 pkgs/main/linux-64 99kB
+ sympy 1.11.1 py310h06a4308_0 pkgs/main/linux-64 Cached
+ torchaudio 2.0.0 py310_cu118 pytorch/linux-64 8MB
+ torchtriton 2.0.0 py310 pytorch/linux-64 Cached
+ torchvision 0.15.0 py310_cu118 pytorch/linux-64 8MB
+ typing_extensions 4.5.0 py310h06a4308_0 pkgs/main/linux-64 49kB
+ urllib3 1.26.15 py310h06a4308_0 pkgs/main/linux-64 Cached
+ zstd 1.5.5 hc292b87_0 pkgs/main/linux-64 Cached
Upgrade:
─────────────────────────────────────────────────────────────────────────────────────────────────
- openssl 1.1.1s h7f8727e_0 anaconda
+ openssl 1.1.1t h7f8727e_0 pkgs/main/linux-64 Cached
Summary:
Install: 71 packages
Upgrade: 1 packages
Total download: 2GB
─────────────────────────────────────────────────────────────────────────────────────────────────
...
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
mamba install -y pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch 121,61s user 7,63s system 95% cpu 2:14,75 total

Agora, o processo levou 121,61 segundos, cerca de 2 minutos. Menos da metade do tempo gasto com o conda.

Criar um ambiente a partir de um arquivolink image 25

Talvez queiramos criar um ambiente com uma determinada lista de pacotes, de modo que possamos passar um arquivo ao conda para criar o ambiente com esses pacotes. Para fazer isso, criamos um arquivo chamado environment.yml com conteúdo como o seguinte

yml
      nome: environment_from_file
      canais:
        - padrões
        - conda-forge
        - pitão
        - nvidia
      dependências:
          - python=3.11
          - cudatoolkit=11.8
          - pytorch=2.2.1
          - torchaudio
          - visão da tocha
          - pip
          - pip:
              - transformadores
      ```
      
      Como podemos ver, indicamos o nome do ambiente, os canais que usaremos, os pacotes com suas versões que instalaremos por meio do conda e os pacotes que instalaremos por meio do pip. Agora dizemos ao conda para criar o ambiente com esses pacotes.
      
      ````bash
      conda env create -f environment.yml
      ```

Criamos o arquivo

	
!touch environment.yml \
&& echo "name: entorno_desde_archivo" >> environment.yml \
&& echo "channels:" >> environment.yml \
&& echo " - defaults" >> environment.yml \
&& echo " - conda-forge" >> environment.yml \
&& echo " - pytorch" >> environment.yml \
&& echo " - nvidia" >> environment.yml \
&& echo "dependencies:" >> environment.yml \
&& echo " - python=3.11" >> environment.yml \
&& echo " - cudatoolkit=11.8" >> environment.yml \
&& echo " - pytorch=2.2.1" >> environment.yml \
&& echo " - torchaudio" >> environment.yml \
&& echo " - torchvision" >> environment.yml \
&& echo " - pip" >> environment.yml \
&& echo " - pip:" >> environment.yml \
&& echo " - transformers" >> environment.yml
Copy

Agora que temos o arquivo, podemos criar o ambiente personalizado

	
!touch environment.yml \
&& echo "name: entorno_desde_archivo" >> environment.yml \
&& echo "channels:" >> environment.yml \
&& echo " - defaults" >> environment.yml \
&& echo " - conda-forge" >> environment.yml \
&& echo " - pytorch" >> environment.yml \
&& echo " - nvidia" >> environment.yml \
&& echo "dependencies:" >> environment.yml \
&& echo " - python=3.11" >> environment.yml \
&& echo " - cudatoolkit=11.8" >> environment.yml \
&& echo " - pytorch=2.2.1" >> environment.yml \
&& echo " - torchaudio" >> environment.yml \
&& echo " - torchvision" >> environment.yml \
&& echo " - pip" >> environment.yml \
&& echo " - pip:" >> environment.yml \
&& echo " - transformers" >> environment.yml
!conda env create -f environment.yml
Copy
	
Retrieving notices: ...working... done
Channels:
- defaults
- conda-forge
- pytorch
- nvidia
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 23.11.0
latest version: 24.1.2
Please update conda by running
$ conda update -n base -c conda-forge conda
Downloading and Extracting Packages:
pytorch-2.2.1 | 1.35 GB | | 0%
cudatoolkit-11.8.0 | 630.7 MB | | 0%
libcublas-12.1.0.26 | 329.0 MB | | 0%
libcusparse-12.0.2.5 | 163.0 MB | | 0%
libnpp-12.0.2.50 | 139.8 MB | | 0%
libcufft-11.0.2.4 | 102.9 MB | | 0%
libcusolver-11.4.4.5 | 98.3 MB | | 0%
libcurand-10.3.5.119 | 51.8 MB | | 0%
python-3.11.8 | 32.9 MB | | 0%
cuda-nvrtc-12.1.105 | 19.7 MB | | 0%
libnvjitlink-12.1.10 | 16.9 MB | | 0%
cuda-cupti-12.1.105 | 15.4 MB | | 0%
torchvision-0.15.2 | 10.3 MB | | 0%
numpy-base-1.26.4 | 8.3 MB | | 0%
torchaudio-2.2.1 | 6.4 MB | | 0%
libnvjpeg-12.1.1.14 | 2.9 MB | | 0%
libcufile-1.9.0.20 | 1.0 MB | | 0%
xz-5.4.6 | 651 KB | | 0%
bzip2-1.0.8 | 262 KB | | 0%
cuda-cudart-12.1.105 | 189 KB | | 0%
tzdata-2024a | 116 KB | | 0%
cuda-nvtx-12.1.105 | 57 KB | | 0%
cuda-opencl-12.4.99 | 11 KB | | 0%
... (more hidden) ...
cudatoolkit-11.8.0 | 630.7 MB | | 0%
libcusparse-12.0.2.5 | 163.0 MB | | 0%
libcublas-12.1.0.26 | 329.0 MB | | 0%
pytorch-2.2.1 | 1.35 GB | | 0%
cudatoolkit-11.8.0 | 630.7 MB | | 0%
libcublas-12.1.0.26 | 329.0 MB | 2 | 1%
libnpp-12.0.2.50 | 139.8 MB | 3 | 1%
pytorch-2.2.1 | 1.35 GB | | 0%
cudatoolkit-11.8.0 | 630.7 MB | 1 | 0%
libcublas-12.1.0.26 | 329.0 MB | 5 | 2%
libnpp-12.0.2.50 | 139.8 MB | 6 | 2%
pytorch-2.2.1 | 1.35 GB | | 0%
cudatoolkit-11.8.0 | 630.7 MB | 2 | 1%
libnpp-12.0.2.50 | 139.8 MB | 9 | 2%
libcublas-12.1.0.26 | 329.0 MB | 8 | 2%
pytorch-2.2.1 | 1.35 GB | | 0%
cudatoolkit-11.8.0 | 630.7 MB | 3 | 1%
libnpp-12.0.2.50 | 139.8 MB | #2 | 3%
libcublas-12.1.0.26 | 329.0 MB | # | 3%
pytorch-2.2.1 | 1.35 GB | 1 | 0%
cudatoolkit-11.8.0 | 630.7 MB | 4 | 1%
libnpp-12.0.2.50 | 139.8 MB | #5 | 4%
libcublas-12.1.0.26 | 329.0 MB | #3 | 4%
pytorch-2.2.1 | 1.35 GB | 1 | 0%
cudatoolkit-11.8.0 | 630.7 MB | 5 | 2%
libnpp-12.0.2.50 | 139.8 MB | #8 | 5%
pytorch-2.2.1 | 1.35 GB | 2 | 1%
libcusparse-12.0.2.5 | 163.0 MB | #5 | 4%
cudatoolkit-11.8.0 | 630.7 MB | 6 | 2%
libnpp-12.0.2.50 | 139.8 MB | ##2 | 6%
pytorch-2.2.1 | 1.35 GB | 2 | 1%
libcusparse-12.0.2.5 | 163.0 MB | #8 | 5%
cudatoolkit-11.8.0 | 630.7 MB | 7 | 2%
pytorch-2.2.1 | 1.35 GB | 2 | 1%
libcusparse-12.0.2.5 | 163.0 MB | ##1 | 6%
libcublas-12.1.0.26 | 329.0 MB | ## | 6%
libnpp-12.0.2.50 | 139.8 MB | ##8 | 8%
pytorch-2.2.1 | 1.35 GB | 3 | 1%
libcusparse-12.0.2.5 | 163.0 MB | ##4 | 7%
libcublas-12.1.0.26 | 329.0 MB | ##2 | 6%
cudatoolkit-11.8.0 | 630.7 MB | 9 | 3%
libnpp-12.0.2.50 | 139.8 MB | ###2 | 9%
pytorch-2.2.1 | 1.35 GB | 3 | 1%
libcublas-12.1.0.26 | 329.0 MB | ##5 | 7%
libnpp-12.0.2.50 | 139.8 MB | ###5 | 10%
cudatoolkit-11.8.0 | 630.7 MB | # | 3%
pytorch-2.2.1 | 1.35 GB | 3 | 1%
libcublas-12.1.0.26 | 329.0 MB | ##7 | 7%
libnpp-12.0.2.50 | 139.8 MB | ###9 | 11%
libcusparse-12.0.2.5 | 163.0 MB | ###4 | 9%
pytorch-2.2.1 | 1.35 GB | 4 | 1%
libcublas-12.1.0.26 | 329.0 MB | ##9 | 8%
libcusparse-12.0.2.5 | 163.0 MB | ###7 | 10%
libnpp-12.0.2.50 | 139.8 MB | ####2 | 12%
pytorch-2.2.1 | 1.35 GB | 4 | 1%
libcublas-12.1.0.26 | 329.0 MB | ###1 | 8%
libcusparse-12.0.2.5 | 163.0 MB | #### | 11%
libnpp-12.0.2.50 | 139.8 MB | ####6 | 12%
pytorch-2.2.1 | 1.35 GB | 4 | 1%
libcublas-12.1.0.26 | 329.0 MB | ###3 | 9%
libcusparse-12.0.2.5 | 163.0 MB | ####4 | 12%
libnpp-12.0.2.50 | 139.8 MB | ####9 | 13%
pytorch-2.2.1 | 1.35 GB | 5 | 1%
libcublas-12.1.0.26 | 329.0 MB | ###5 | 10%
libcusparse-12.0.2.5 | 163.0 MB | ####7 | 13%
libnpp-12.0.2.50 | 139.8 MB | #####2 | 14%
pytorch-2.2.1 | 1.35 GB | 5 | 2%
libcublas-12.1.0.26 | 329.0 MB | ###7 | 10%
libcusparse-12.0.2.5 | 163.0 MB | ##### | 14%
libnpp-12.0.2.50 | 139.8 MB | #####6 | 15%
pytorch-2.2.1 | 1.35 GB | 5 | 2%
libcusparse-12.0.2.5 | 163.0 MB | #####4 | 15%
libcublas-12.1.0.26 | 329.0 MB | ###8 | 11%
libnpp-12.0.2.50 | 139.8 MB | ###### | 16%
pytorch-2.2.1 | 1.35 GB | 6 | 2%
libcusparse-12.0.2.5 | 163.0 MB | #####7 | 16%
libnpp-12.0.2.50 | 139.8 MB | ######4 | 17%
pytorch-2.2.1 | 1.35 GB | 6 | 2%
cudatoolkit-11.8.0 | 630.7 MB | #9 | 5%
libcusparse-12.0.2.5 | 163.0 MB | ######1 | 17%
pytorch-2.2.1 | 1.35 GB | 7 | 2%
libcublas-12.1.0.26 | 329.0 MB | ####2 | 11%
cudatoolkit-11.8.0 | 630.7 MB | ## | 6%
libcusparse-12.0.2.5 | 163.0 MB | ######4 | 17%
pytorch-2.2.1 | 1.35 GB | 7 | 2%
libcublas-12.1.0.26 | 329.0 MB | ####4 | 12%
cudatoolkit-11.8.0 | 630.7 MB | ##1 | 6%
libcusparse-12.0.2.5 | 163.0 MB | ######8 | 18%
pytorch-2.2.1 | 1.35 GB | 7 | 2%
libcublas-12.1.0.26 | 329.0 MB | ####5 | 12%
cudatoolkit-11.8.0 | 630.7 MB | ##2 | 6%
libcusparse-12.0.2.5 | 163.0 MB | #######2 | 19%
pytorch-2.2.1 | 1.35 GB | 8 | 2%
libcublas-12.1.0.26 | 329.0 MB | ####7 | 13%
cudatoolkit-11.8.0 | 630.7 MB | ##3 | 6%
libcusparse-12.0.2.5 | 163.0 MB | #######5 | 21%
pytorch-2.2.1 | 1.35 GB | 8 | 2%
libcublas-12.1.0.26 | 329.0 MB | ####8 | 13%
cudatoolkit-11.8.0 | 630.7 MB | ##4 | 7%
libcusparse-12.0.2.5 | 163.0 MB | #######9 | 22%
pytorch-2.2.1 | 1.35 GB | 8 | 2%
libcublas-12.1.0.26 | 329.0 MB | ##### | 14%
cudatoolkit-11.8.0 | 630.7 MB | ##5 | 7%
libcusparse-12.0.2.5 | 163.0 MB | ########3 | 23%
pytorch-2.2.1 | 1.35 GB | 9 | 3%
libcublas-12.1.0.26 | 329.0 MB | #####1 | 14%
cudatoolkit-11.8.0 | 630.7 MB | ##6 | 7%
libcusparse-12.0.2.5 | 163.0 MB | ########7 | 24%
pytorch-2.2.1 | 1.35 GB | 9 | 3%
libcublas-12.1.0.26 | 329.0 MB | #####3 | 14%
cudatoolkit-11.8.0 | 630.7 MB | ##7 | 8%
libcusparse-12.0.2.5 | 163.0 MB | ######### | 25%
pytorch-2.2.1 | 1.35 GB | # | 3%
libcublas-12.1.0.26 | 329.0 MB | #####5 | 15%
cudatoolkit-11.8.0 | 630.7 MB | ##8 | 8%
pytorch-2.2.1 | 1.35 GB | # | 3%
libnpp-12.0.2.50 | 139.8 MB | ##########3 | 28%
libcublas-12.1.0.26 | 329.0 MB | #####6 | 15%
cudatoolkit-11.8.0 | 630.7 MB | ##9 | 8%
libcusparse-12.0.2.5 | 163.0 MB | #########8 | 27%
pytorch-2.2.1 | 1.35 GB | # | 3%
libcublas-12.1.0.26 | 329.0 MB | #####8 | 16%
cudatoolkit-11.8.0 | 630.7 MB | ### | 8%
libcusparse-12.0.2.5 | 163.0 MB | ##########2 | 28%
pytorch-2.2.1 | 1.35 GB | #1 | 3%
libcublas-12.1.0.26 | 329.0 MB | ###### | 16%
cudatoolkit-11.8.0 | 630.7 MB | ###1 | 9%
pytorch-2.2.1 | 1.35 GB | #1 | 3%
libnpp-12.0.2.50 | 139.8 MB | ###########5 | 31%
libcublas-12.1.0.26 | 329.0 MB | ######1 | 17%
cudatoolkit-11.8.0 | 630.7 MB | ###2 | 9%
libcusparse-12.0.2.5 | 163.0 MB | ##########9 | 30%
pytorch-2.2.1 | 1.35 GB | #2 | 3%
libcublas-12.1.0.26 | 329.0 MB | ######3 | 17%
cudatoolkit-11.8.0 | 630.7 MB | ###3 | 9%
pytorch-2.2.1 | 1.35 GB | #2 | 3%
libnpp-12.0.2.50 | 139.8 MB | ############2 | 33%
libcublas-12.1.0.26 | 329.0 MB | ######4 | 18%
cudatoolkit-11.8.0 | 630.7 MB | ###4 | 9%
pytorch-2.2.1 | 1.35 GB | #2 | 3%
libnpp-12.0.2.50 | 139.8 MB | ############6 | 34%
libcublas-12.1.0.26 | 329.0 MB | ######6 | 18%
cudatoolkit-11.8.0 | 630.7 MB | ###5 | 10%
pytorch-2.2.1 | 1.35 GB | #3 | 4%
libnpp-12.0.2.50 | 139.8 MB | ############# | 35%
libcublas-12.1.0.26 | 329.0 MB | ######8 | 18%
cudatoolkit-11.8.0 | 630.7 MB | ###6 | 10%
pytorch-2.2.1 | 1.35 GB | #3 | 4%
libcublas-12.1.0.26 | 329.0 MB | ######9 | 19%
libnpp-12.0.2.50 | 139.8 MB | #############3 | 36%
cudatoolkit-11.8.0 | 630.7 MB | ###7 | 10%
libcusparse-12.0.2.5 | 163.0 MB | ############7 | 34%
libcublas-12.1.0.26 | 329.0 MB | #######1 | 19%
pytorch-2.2.1 | 1.35 GB | #3 | 4%
cudatoolkit-11.8.0 | 630.7 MB | ###9 | 11%
libcusparse-12.0.2.5 | 163.0 MB | #############1 | 35%
libcublas-12.1.0.26 | 329.0 MB | #######3 | 20%
pytorch-2.2.1 | 1.35 GB | #4 | 4%
cudatoolkit-11.8.0 | 630.7 MB | #### | 11%
libcusparse-12.0.2.5 | 163.0 MB | #############4 | 36%
libnpp-12.0.2.50 | 139.8 MB | ##############4 | 39%
pytorch-2.2.1 | 1.35 GB | #4 | 4%
cudatoolkit-11.8.0 | 630.7 MB | ####1 | 11%
libcusparse-12.0.2.5 | 163.0 MB | #############8 | 37%
pytorch-2.2.1 | 1.35 GB | #5 | 4%
libcublas-12.1.0.26 | 329.0 MB | #######6 | 21%
cudatoolkit-11.8.0 | 630.7 MB | ####2 | 11%
libcusparse-12.0.2.5 | 163.0 MB | ##############2 | 39%
pytorch-2.2.1 | 1.35 GB | #5 | 4%
libcublas-12.1.0.26 | 329.0 MB | #######8 | 21%
cudatoolkit-11.8.0 | 630.7 MB | ####3 | 12%
libcusparse-12.0.2.5 | 163.0 MB | ##############6 | 40%
pytorch-2.2.1 | 1.35 GB | #5 | 4%
libcublas-12.1.0.26 | 329.0 MB | #######9 | 22%
cudatoolkit-11.8.0 | 630.7 MB | ####4 | 12%
libcusparse-12.0.2.5 | 163.0 MB | ############### | 41%
pytorch-2.2.1 | 1.35 GB | #6 | 4%
libcublas-12.1.0.26 | 329.0 MB | ########1 | 22%
cudatoolkit-11.8.0 | 630.7 MB | ####5 | 12%
libcusparse-12.0.2.5 | 163.0 MB | ###############4 | 42%
pytorch-2.2.1 | 1.35 GB | #6 | 5%
libcublas-12.1.0.26 | 329.0 MB | ########2 | 22%
cudatoolkit-11.8.0 | 630.7 MB | ####5 | 12%
libcusparse-12.0.2.5 | 163.0 MB | ###############8 | 43%
pytorch-2.2.1 | 1.35 GB | #7 | 5%
libcublas-12.1.0.26 | 329.0 MB | ########4 | 23%
libcusparse-12.0.2.5 | 163.0 MB | ################2 | 44%
cudatoolkit-11.8.0 | 630.7 MB | ####6 | 13%
pytorch-2.2.1 | 1.35 GB | #7 | 5%
libcublas-12.1.0.26 | 329.0 MB | ########5 | 23%
libcusparse-12.0.2.5 | 163.0 MB | ################6 | 45%
pytorch-2.2.1 | 1.35 GB | #7 | 5%
libnpp-12.0.2.50 | 139.8 MB | #################5 | 48%
libcublas-12.1.0.26 | 329.0 MB | ########7 | 24%
libcusparse-12.0.2.5 | 163.0 MB | ################# | 46%
pytorch-2.2.1 | 1.35 GB | #8 | 5%
libnpp-12.0.2.50 | 139.8 MB | #################9 | 49%
libcublas-12.1.0.26 | 329.0 MB | ########8 | 24%
libcusparse-12.0.2.5 | 163.0 MB | #################4 | 47%
pytorch-2.2.1 | 1.35 GB | #8 | 5%
libnpp-12.0.2.50 | 139.8 MB | ##################3 | 50%
libcublas-12.1.0.26 | 329.0 MB | ######### | 24%
cudatoolkit-11.8.0 | 630.7 MB | ##### | 14%
pytorch-2.2.1 | 1.35 GB | #9 | 5%
libnpp-12.0.2.50 | 139.8 MB | ##################7 | 51%
libcublas-12.1.0.26 | 329.0 MB | #########1 | 25%
cudatoolkit-11.8.0 | 630.7 MB | #####1 | 14%
pytorch-2.2.1 | 1.35 GB | #9 | 5%
libnpp-12.0.2.50 | 139.8 MB | ###################1 | 52%
libcublas-12.1.0.26 | 329.0 MB | #########3 | 25%
cudatoolkit-11.8.0 | 630.7 MB | #####2 | 14%
pytorch-2.2.1 | 1.35 GB | ## | 5%
libnpp-12.0.2.50 | 139.8 MB | ###################6 | 53%
libcublas-12.1.0.26 | 329.0 MB | #########5 | 26%
pytorch-2.2.1 | 1.35 GB | ## | 6%
libnpp-12.0.2.50 | 139.8 MB | #################### | 54%
libcusparse-12.0.2.5 | 163.0 MB | ##################9 | 51%
libcublas-12.1.0.26 | 329.0 MB | #########6 | 26%
pytorch-2.2.1 | 1.35 GB | ## | 6%
libnpp-12.0.2.50 | 139.8 MB | ####################4 | 55%
libcusparse-12.0.2.5 | 163.0 MB | ###################2 | 52%
libcublas-12.1.0.26 | 329.0 MB | #########8 | 27%
pytorch-2.2.1 | 1.35 GB | ##1 | 6%
libnpp-12.0.2.50 | 139.8 MB | ####################9 | 57%
libcusparse-12.0.2.5 | 163.0 MB | ###################6 | 53%
pytorch-2.2.1 | 1.35 GB | ##1 | 6%
cudatoolkit-11.8.0 | 630.7 MB | #####5 | 15%
libnpp-12.0.2.50 | 139.8 MB | #####################3 | 58%
libcusparse-12.0.2.5 | 163.0 MB | ###################9 | 54%
pytorch-2.2.1 | 1.35 GB | ##2 | 6%
libnpp-12.0.2.50 | 139.8 MB | #####################8 | 59%
cudatoolkit-11.8.0 | 630.7 MB | #####6 | 15%
libcublas-12.1.0.26 | 329.0 MB | ##########3 | 28%
libcusparse-12.0.2.5 | 163.0 MB | ####################2 | 55%
pytorch-2.2.1 | 1.35 GB | ##2 | 6%
cudatoolkit-11.8.0 | 630.7 MB | #####6 | 15%
libcusparse-12.0.2.5 | 163.0 MB | ####################6 | 56%
libcublas-12.1.0.26 | 329.0 MB | ##########4 | 28%
libnpp-12.0.2.50 | 139.8 MB | ######################8 | 62%
pytorch-2.2.1 | 1.35 GB | ##3 | 6%
libcusparse-12.0.2.5 | 163.0 MB | ####################9 | 57%
libcublas-12.1.0.26 | 329.0 MB | ##########6 | 29%
libnpp-12.0.2.50 | 139.8 MB | #######################2 | 63%
pytorch-2.2.1 | 1.35 GB | ##3 | 6%
libcusparse-12.0.2.5 | 163.0 MB | #####################2 | 58%
libcublas-12.1.0.26 | 329.0 MB | ##########8 | 29%
pytorch-2.2.1 | 1.35 GB | ##4 | 7%
cudatoolkit-11.8.0 | 630.7 MB | #####9 | 16%
libcusparse-12.0.2.5 | 163.0 MB | #####################6 | 58%
libcublas-12.1.0.26 | 329.0 MB | ##########9 | 30%
pytorch-2.2.1 | 1.35 GB | ##4 | 7%
cudatoolkit-11.8.0 | 630.7 MB | #####9 | 16%
libcusparse-12.0.2.5 | 163.0 MB | #####################9 | 59%
libcublas-12.1.0.26 | 329.0 MB | ###########1 | 30%
libnpp-12.0.2.50 | 139.8 MB | ########################7 | 67%
libcusparse-12.0.2.5 | 163.0 MB | ######################3 | 60%
cudatoolkit-11.8.0 | 630.7 MB | ###### | 16%
pytorch-2.2.1 | 1.35 GB | ##4 | 7%
libnpp-12.0.2.50 | 139.8 MB | #########################2 | 68%
libcusparse-12.0.2.5 | 163.0 MB | ######################7 | 61%
cudatoolkit-11.8.0 | 630.7 MB | ######1 | 17%
libcublas-12.1.0.26 | 329.0 MB | ###########5 | 31%
pytorch-2.2.1 | 1.35 GB | ##5 | 7%
libcusparse-12.0.2.5 | 163.0 MB | ####################### | 62%
cudatoolkit-11.8.0 | 630.7 MB | ######2 | 17%
pytorch-2.2.1 | 1.35 GB | ##5 | 7%
libnpp-12.0.2.50 | 139.8 MB | ##########################2 | 71%
cudatoolkit-11.8.0 | 630.7 MB | ######3 | 17%
libcublas-12.1.0.26 | 329.0 MB | ###########9 | 32%
pytorch-2.2.1 | 1.35 GB | ##5 | 7%
libnpp-12.0.2.50 | 139.8 MB | ##########################7 | 72%
cudatoolkit-11.8.0 | 630.7 MB | ######3 | 17%
libcublas-12.1.0.26 | 329.0 MB | ############1 | 33%
pytorch-2.2.1 | 1.35 GB | ##6 | 7%
libnpp-12.0.2.50 | 139.8 MB | ###########################2 | 74%
cudatoolkit-11.8.0 | 630.7 MB | ######4 | 17%
libcublas-12.1.0.26 | 329.0 MB | ############3 | 33%
pytorch-2.2.1 | 1.35 GB | ##6 | 7%
libnpp-12.0.2.50 | 139.8 MB | ###########################6 | 75%
libcublas-12.1.0.26 | 329.0 MB | ############5 | 34%
cudatoolkit-11.8.0 | 630.7 MB | ######5 | 18%
pytorch-2.2.1 | 1.35 GB | ##6 | 7%
libnpp-12.0.2.50 | 139.8 MB | ############################1 | 76%
libcublas-12.1.0.26 | 329.0 MB | ############7 | 34%
cudatoolkit-11.8.0 | 630.7 MB | ######5 | 18%
pytorch-2.2.1 | 1.35 GB | ##7 | 7%
libnpp-12.0.2.50 | 139.8 MB | ############################6 | 77%
libcublas-12.1.0.26 | 329.0 MB | ############9 | 35%
cudatoolkit-11.8.0 | 630.7 MB | ######6 | 18%
pytorch-2.2.1 | 1.35 GB | ##7 | 8%
libnpp-12.0.2.50 | 139.8 MB | #############################1 | 79%
libcublas-12.1.0.26 | 329.0 MB | #############1 | 35%
cudatoolkit-11.8.0 | 630.7 MB | ######7 | 18%
pytorch-2.2.1 | 1.35 GB | ##8 | 8%
libnpp-12.0.2.50 | 139.8 MB | #############################6 | 80%
libcublas-12.1.0.26 | 329.0 MB | #############3 | 36%
cudatoolkit-11.8.0 | 630.7 MB | ######8 | 18%
pytorch-2.2.1 | 1.35 GB | ##8 | 8%
libnpp-12.0.2.50 | 139.8 MB | ##############################1 | 81%
libcublas-12.1.0.26 | 329.0 MB | #############4 | 36%
libcusparse-12.0.2.5 | 163.0 MB | ########################## | 70%
pytorch-2.2.1 | 1.35 GB | ##8 | 8%
libnpp-12.0.2.50 | 139.8 MB | ##############################6 | 83%
libcublas-12.1.0.26 | 329.0 MB | #############6 | 37%
cudatoolkit-11.8.0 | 630.7 MB | ######9 | 19%
pytorch-2.2.1 | 1.35 GB | ##9 | 8%
libnpp-12.0.2.50 | 139.8 MB | ###############################1 | 84%
libcublas-12.1.0.26 | 329.0 MB | #############8 | 38%
cudatoolkit-11.8.0 | 630.7 MB | ####### | 19%
pytorch-2.2.1 | 1.35 GB | ##9 | 8%
libnpp-12.0.2.50 | 139.8 MB | ###############################6 | 85%
libcublas-12.1.0.26 | 329.0 MB | ############## | 38%
cudatoolkit-11.8.0 | 630.7 MB | ####### | 19%
pytorch-2.2.1 | 1.35 GB | ### | 8%
libnpp-12.0.2.50 | 139.8 MB | ################################1 | 87%
libcublas-12.1.0.26 | 329.0 MB | ##############2 | 39%
cudatoolkit-11.8.0 | 630.7 MB | #######1 | 19%
pytorch-2.2.1 | 1.35 GB | ### | 8%
libnpp-12.0.2.50 | 139.8 MB | ################################6 | 88%
libcublas-12.1.0.26 | 329.0 MB | ##############4 | 39%
cudatoolkit-11.8.0 | 630.7 MB | #######2 | 19%
pytorch-2.2.1 | 1.35 GB | ###1 | 8%
libnpp-12.0.2.50 | 139.8 MB | #################################1 | 89%
libcublas-12.1.0.26 | 329.0 MB | ##############6 | 40%
cudatoolkit-11.8.0 | 630.7 MB | #######2 | 20%
pytorch-2.2.1 | 1.35 GB | ###1 | 8%
libnpp-12.0.2.50 | 139.8 MB | #################################6 | 91%
libcublas-12.1.0.26 | 329.0 MB | ##############8 | 40%
pytorch-2.2.1 | 1.35 GB | ###1 | 9%
cudatoolkit-11.8.0 | 630.7 MB | #######3 | 20%
libnpp-12.0.2.50 | 139.8 MB | ##################################1 | 92%
libcublas-12.1.0.26 | 329.0 MB | ############### | 41%
pytorch-2.2.1 | 1.35 GB | ###2 | 9%
cudatoolkit-11.8.0 | 630.7 MB | #######3 | 20%
libnpp-12.0.2.50 | 139.8 MB | ##################################6 | 94%
libcublas-12.1.0.26 | 329.0 MB | ###############2 | 41%
libcusparse-12.0.2.5 | 163.0 MB | ############################8 | 78%
pytorch-2.2.1 | 1.35 GB | ###2 | 9%
cudatoolkit-11.8.0 | 630.7 MB | #######4 | 20%
libcublas-12.1.0.26 | 329.0 MB | ###############3 | 42%
libcusparse-12.0.2.5 | 163.0 MB | #############################1 | 79%
pytorch-2.2.1 | 1.35 GB | ###3 | 9%
cudatoolkit-11.8.0 | 630.7 MB | #######5 | 20%
libcublas-12.1.0.26 | 329.0 MB | ###############5 | 42%
libcusparse-12.0.2.5 | 163.0 MB | #############################4 | 80%
pytorch-2.2.1 | 1.35 GB | ###3 | 9%
cudatoolkit-11.8.0 | 630.7 MB | #######5 | 20%
libcublas-12.1.0.26 | 329.0 MB | ###############7 | 42%
libcusparse-12.0.2.5 | 163.0 MB | #############################7 | 80%
pytorch-2.2.1 | 1.35 GB | ###3 | 9%
cudatoolkit-11.8.0 | 630.7 MB | #######6 | 21%
libcublas-12.1.0.26 | 329.0 MB | ###############8 | 43%
pytorch-2.2.1 | 1.35 GB | ###4 | 9%
cudatoolkit-11.8.0 | 630.7 MB | #######7 | 21%
libcublas-12.1.0.26 | 329.0 MB | ################1 | 44%
pytorch-2.2.1 | 1.35 GB | ###4 | 9%
cudatoolkit-11.8.0 | 630.7 MB | #######8 | 21%
libcublas-12.1.0.26 | 329.0 MB | ################3 | 44%
pytorch-2.2.1 | 1.35 GB | ###5 | 10%
cudatoolkit-11.8.0 | 630.7 MB | #######9 | 21%
libcufft-11.0.2.4 | 102.9 MB | | 0%
libcublas-12.1.0.26 | 329.0 MB | ################5 | 45%
pytorch-2.2.1 | 1.35 GB | ###6 | 10%
cudatoolkit-11.8.0 | 630.7 MB | ######## | 22%
libcufft-11.0.2.4 | 102.9 MB | 5 | 1%
libcublas-12.1.0.26 | 329.0 MB | ################7 | 45%
pytorch-2.2.1 | 1.35 GB | ###6 | 10%
cudatoolkit-11.8.0 | 630.7 MB | ######## | 22%
libcufft-11.0.2.4 | 102.9 MB | #1 | 3%
libcublas-12.1.0.26 | 329.0 MB | ################8 | 46%
pytorch-2.2.1 | 1.35 GB | ###7 | 10%
cudatoolkit-11.8.0 | 630.7 MB | ########1 | 22%
libcufft-11.0.2.4 | 102.9 MB | #6 | 5%
libcublas-12.1.0.26 | 329.0 MB | ################# | 46%
pytorch-2.2.1 | 1.35 GB | ###7 | 10%
libcufft-11.0.2.4 | 102.9 MB | ##2 | 6%
cudatoolkit-11.8.0 | 630.7 MB | ########2 | 22%
libcublas-12.1.0.26 | 329.0 MB | #################2 | 47%
pytorch-2.2.1 | 1.35 GB | ###8 | 10%
libcufft-11.0.2.4 | 102.9 MB | ##8 | 8%
cudatoolkit-11.8.0 | 630.7 MB | ########3 | 23%
libcusparse-12.0.2.5 | 163.0 MB | ################################7 | 89%
pytorch-2.2.1 | 1.35 GB | ###8 | 10%
libcufft-11.0.2.4 | 102.9 MB | ###4 | 9%
pytorch-2.2.1 | 1.35 GB | ###9 | 11%
pytorch-2.2.1 | 1.35 GB | #### | 11%
cudatoolkit-11.8.0 | 630.7 MB | ########4 | 23%
libcublas-12.1.0.26 | 329.0 MB | ##################5 | 50%
pytorch-2.2.1 | 1.35 GB | ####1 | 11%
libcufft-11.0.2.4 | 102.9 MB | ###9 | 11%
cudatoolkit-11.8.0 | 630.7 MB | ########4 | 23%
pytorch-2.2.1 | 1.35 GB | ####1 | 11%
libcusparse-12.0.2.5 | 163.0 MB | #################################3 | 90%
libcufft-11.0.2.4 | 102.9 MB | ####4 | 12%
cudatoolkit-11.8.0 | 630.7 MB | ########5 | 23%
libcublas-12.1.0.26 | 329.0 MB | ###################2 | 52%
libcusparse-12.0.2.5 | 163.0 MB | #################################5 | 91%
cudatoolkit-11.8.0 | 630.7 MB | ########6 | 23%
pytorch-2.2.1 | 1.35 GB | ####2 | 11%
libcublas-12.1.0.26 | 329.0 MB | ###################5 | 53%
libcusparse-12.0.2.5 | 163.0 MB | #################################8 | 91%
cudatoolkit-11.8.0 | 630.7 MB | ########6 | 23%
pytorch-2.2.1 | 1.35 GB | ####2 | 12%
libcublas-12.1.0.26 | 329.0 MB | ###################8 | 54%
libcusparse-12.0.2.5 | 163.0 MB | ################################## | 92%
cudatoolkit-11.8.0 | 630.7 MB | ########7 | 24%
pytorch-2.2.1 | 1.35 GB | ####3 | 12%
libcublas-12.1.0.26 | 329.0 MB | ####################1 | 55%
libcusparse-12.0.2.5 | 163.0 MB | ##################################3 | 93%
pytorch-2.2.1 | 1.35 GB | ####3 | 12%
libcublas-12.1.0.26 | 329.0 MB | ####################4 | 55%
libcusparse-12.0.2.5 | 163.0 MB | ##################################5 | 93%
cudatoolkit-11.8.0 | 630.7 MB | ########9 | 24%
pytorch-2.2.1 | 1.35 GB | ####4 | 12%
libcusparse-12.0.2.5 | 163.0 MB | ##################################8 | 94%
libcublas-12.1.0.26 | 329.0 MB | ####################7 | 56%
cudatoolkit-11.8.0 | 630.7 MB | ######### | 24%
libcufft-11.0.2.4 | 102.9 MB | ######7 | 18%
pytorch-2.2.1 | 1.35 GB | ####4 | 12%
cudatoolkit-11.8.0 | 630.7 MB | #########1 | 25%
libcufft-11.0.2.4 | 102.9 MB | #######1 | 19%
libcublas-12.1.0.26 | 329.0 MB | ##################### | 57%
pytorch-2.2.1 | 1.35 GB | ####5 | 12%
cudatoolkit-11.8.0 | 630.7 MB | #########2 | 25%
libcufft-11.0.2.4 | 102.9 MB | #######5 | 20%
libcublas-12.1.0.26 | 329.0 MB | #####################2 | 57%
pytorch-2.2.1 | 1.35 GB | ####5 | 12%
cudatoolkit-11.8.0 | 630.7 MB | #########3 | 25%
libcufft-11.0.2.4 | 102.9 MB | #######9 | 21%
pytorch-2.2.1 | 1.35 GB | ####6 | 13%
libcublas-12.1.0.26 | 329.0 MB | #####################4 | 58%
cudatoolkit-11.8.0 | 630.7 MB | #########4 | 26%
libcufft-11.0.2.4 | 102.9 MB | ########2 | 22%
libcusparse-12.0.2.5 | 163.0 MB | ####################################5 | 99%
pytorch-2.2.1 | 1.35 GB | ####6 | 13%
libcublas-12.1.0.26 | 329.0 MB | #####################6 | 59%
libcufft-11.0.2.4 | 102.9 MB | ########6 | 23%
libcusparse-12.0.2.5 | 163.0 MB | ####################################9 | 100%
pytorch-2.2.1 | 1.35 GB | ####7 | 13%
libcufft-11.0.2.4 | 102.9 MB | #########1 | 25%
libcublas-12.1.0.26 | 329.0 MB | #####################8 | 59%
cudatoolkit-11.8.0 | 630.7 MB | #########8 | 27%
pytorch-2.2.1 | 1.35 GB | ####7 | 13%
libcublas-12.1.0.26 | 329.0 MB | ###################### | 60%
cudatoolkit-11.8.0 | 630.7 MB | ########## | 27%
pytorch-2.2.1 | 1.35 GB | ####7 | 13%
libcublas-12.1.0.26 | 329.0 MB | ######################2 | 60%
libcusolver-11.4.4.5 | 98.3 MB | | 0%
cudatoolkit-11.8.0 | 630.7 MB | ##########1 | 27%
pytorch-2.2.1 | 1.35 GB | ####8 | 13%
libcublas-12.1.0.26 | 329.0 MB | ######################4 | 61%
libcusolver-11.4.4.5 | 98.3 MB | 5 | 2%
cudatoolkit-11.8.0 | 630.7 MB | ##########3 | 28%
pytorch-2.2.1 | 1.35 GB | ####8 | 13%
libcusolver-11.4.4.5 | 98.3 MB | #1 | 3%
libcublas-12.1.0.26 | 329.0 MB | ######################6 | 61%
cudatoolkit-11.8.0 | 630.7 MB | ##########4 | 28%
libcufft-11.0.2.4 | 102.9 MB | ###########7 | 32%
libcusolver-11.4.4.5 | 98.3 MB | #9 | 5%
pytorch-2.2.1 | 1.35 GB | ####9 | 13%
libcublas-12.1.0.26 | 329.0 MB | ######################7 | 62%
libcusolver-11.4.4.5 | 98.3 MB | ##8 | 8%
libcufft-11.0.2.4 | 102.9 MB | ############1 | 33%
pytorch-2.2.1 | 1.35 GB | ####9 | 13%
libcublas-12.1.0.26 | 329.0 MB | ######################9 | 62%
libcusolver-11.4.4.5 | 98.3 MB | ###7 | 10%
cudatoolkit-11.8.0 | 630.7 MB | ##########8 | 29%
pytorch-2.2.1 | 1.35 GB | ####9 | 13%
libcusolver-11.4.4.5 | 98.3 MB | ####5 | 12%
libcublas-12.1.0.26 | 329.0 MB | ####################### | 62%
cudatoolkit-11.8.0 | 630.7 MB | ########### | 30%
pytorch-2.2.1 | 1.35 GB | ####9 | 14%
libcusolver-11.4.4.5 | 98.3 MB | #####5 | 15%
libcublas-12.1.0.26 | 329.0 MB | #######################2 | 63%
cudatoolkit-11.8.0 | 630.7 MB | ###########1 | 30%
pytorch-2.2.1 | 1.35 GB | ##### | 14%
libcusolver-11.4.4.5 | 98.3 MB | ######4 | 17%
cudatoolkit-11.8.0 | 630.7 MB | ###########2 | 31%
pytorch-2.2.1 | 1.35 GB | ##### | 14%
libcusolver-11.4.4.5 | 98.3 MB | #######3 | 20%
libcufft-11.0.2.4 | 102.9 MB | #############6 | 37%
cudatoolkit-11.8.0 | 630.7 MB | ###########4 | 31%
pytorch-2.2.1 | 1.35 GB | ##### | 14%
libcusolver-11.4.4.5 | 98.3 MB | ########2 | 22%
libcufft-11.0.2.4 | 102.9 MB | ############## | 38%
cudatoolkit-11.8.0 | 630.7 MB | ###########5 | 31%
libcublas-12.1.0.26 | 329.0 MB | #######################5 | 64%
pytorch-2.2.1 | 1.35 GB | #####1 | 14%
libcufft-11.0.2.4 | 102.9 MB | ##############3 | 39%
cudatoolkit-11.8.0 | 630.7 MB | ###########7 | 32%
libcublas-12.1.0.26 | 329.0 MB | #######################6 | 64%
pytorch-2.2.1 | 1.35 GB | #####1 | 14%
libcufft-11.0.2.4 | 102.9 MB | ##############6 | 40%
cudatoolkit-11.8.0 | 630.7 MB | ###########9 | 32%
libcublas-12.1.0.26 | 329.0 MB | #######################7 | 64%
pytorch-2.2.1 | 1.35 GB | #####1 | 14%
libcufft-11.0.2.4 | 102.9 MB | ##############9 | 40%
cudatoolkit-11.8.0 | 630.7 MB | ############ | 33%
libcublas-12.1.0.26 | 329.0 MB | #######################8 | 65%
pytorch-2.2.1 | 1.35 GB | #####1 | 14%
cudatoolkit-11.8.0 | 630.7 MB | ############2 | 33%
libcufft-11.0.2.4 | 102.9 MB | ###############2 | 41%
libcusolver-11.4.4.5 | 98.3 MB | ############5 | 34%
libcublas-12.1.0.26 | 329.0 MB | #######################9 | 65%
pytorch-2.2.1 | 1.35 GB | #####2 | 14%
libcufft-11.0.2.4 | 102.9 MB | ###############5 | 42%
libcusolver-11.4.4.5 | 98.3 MB | #############3 | 36%
cudatoolkit-11.8.0 | 630.7 MB | ############5 | 34%
pytorch-2.2.1 | 1.35 GB | #####2 | 14%
libcufft-11.0.2.4 | 102.9 MB | ###############8 | 43%
libcusolver-11.4.4.5 | 98.3 MB | ##############2 | 38%
cudatoolkit-11.8.0 | 630.7 MB | ############7 | 35%
pytorch-2.2.1 | 1.35 GB | #####2 | 14%
libcufft-11.0.2.4 | 102.9 MB | ################1 | 44%
cudatoolkit-11.8.0 | 630.7 MB | ############9 | 35%
libcusolver-11.4.4.5 | 98.3 MB | ############### | 41%
pytorch-2.2.1 | 1.35 GB | #####2 | 14%
libcufft-11.0.2.4 | 102.9 MB | ################3 | 44%
cudatoolkit-11.8.0 | 630.7 MB | #############1 | 36%
libcusolver-11.4.4.5 | 98.3 MB | ###############8 | 43%
pytorch-2.2.1 | 1.35 GB | #####3 | 14%
libcufft-11.0.2.4 | 102.9 MB | ################6 | 45%
cudatoolkit-11.8.0 | 630.7 MB | #############3 | 36%
pytorch-2.2.1 | 1.35 GB | #####3 | 14%
libcublas-12.1.0.26 | 329.0 MB | ########################4 | 66%
libcufft-11.0.2.4 | 102.9 MB | ################9 | 46%
libcusolver-11.4.4.5 | 98.3 MB | #################3 | 47%
pytorch-2.2.1 | 1.35 GB | #####3 | 14%
libcublas-12.1.0.26 | 329.0 MB | ########################5 | 66%
libcufft-11.0.2.4 | 102.9 MB | #################2 | 47%
libcusolver-11.4.4.5 | 98.3 MB | ##################1 | 49%
pytorch-2.2.1 | 1.35 GB | #####3 | 15%
libcublas-12.1.0.26 | 329.0 MB | ########################6 | 67%
libcufft-11.0.2.4 | 102.9 MB | #################6 | 48%
pytorch-2.2.1 | 1.35 GB | #####4 | 15%
cudatoolkit-11.8.0 | 630.7 MB | #############8 | 37%
libcublas-12.1.0.26 | 329.0 MB | ########################7 | 67%
libcufft-11.0.2.4 | 102.9 MB | #################9 | 48%
pytorch-2.2.1 | 1.35 GB | #####4 | 15%
libcublas-12.1.0.26 | 329.0 MB | ########################8 | 67%
cudatoolkit-11.8.0 | 630.7 MB | ############## | 38%
libcufft-11.0.2.4 | 102.9 MB | ##################2 | 49%
pytorch-2.2.1 | 1.35 GB | #####4 | 15%
libcublas-12.1.0.26 | 329.0 MB | ########################9 | 67%
cudatoolkit-11.8.0 | 630.7 MB | ##############1 | 38%
libcufft-11.0.2.4 | 102.9 MB | ##################5 | 50%
pytorch-2.2.1 | 1.35 GB | #####5 | 15%
libcublas-12.1.0.26 | 329.0 MB | ######################### | 68%
cudatoolkit-11.8.0 | 630.7 MB | ##############3 | 39%
libcufft-11.0.2.4 | 102.9 MB | ##################8 | 51%
pytorch-2.2.1 | 1.35 GB | #####5 | 15%
libcublas-12.1.0.26 | 329.0 MB | #########################1 | 68%
cudatoolkit-11.8.0 | 630.7 MB | ##############4 | 39%
libcufft-11.0.2.4 | 102.9 MB | ###################1 | 52%
pytorch-2.2.1 | 1.35 GB | #####5 | 15%
libcublas-12.1.0.26 | 329.0 MB | #########################2 | 68%
cudatoolkit-11.8.0 | 630.7 MB | ##############6 | 40%
libcufft-11.0.2.4 | 102.9 MB | ###################4 | 52%
libcusolver-11.4.4.5 | 98.3 MB | #######################9 | 65%
pytorch-2.2.1 | 1.35 GB | #####5 | 15%
cudatoolkit-11.8.0 | 630.7 MB | ##############7 | 40%
libcufft-11.0.2.4 | 102.9 MB | ###################7 | 53%
libcusolver-11.4.4.5 | 98.3 MB | ########################8 | 67%
pytorch-2.2.1 | 1.35 GB | #####6 | 15%
cudatoolkit-11.8.0 | 630.7 MB | ##############9 | 40%
libcufft-11.0.2.4 | 102.9 MB | #################### | 54%
libcublas-12.1.0.26 | 329.0 MB | #########################5 | 69%
pytorch-2.2.1 | 1.35 GB | #####6 | 15%
cudatoolkit-11.8.0 | 630.7 MB | ############### | 41%
libcufft-11.0.2.4 | 102.9 MB | ####################3 | 55%
pytorch-2.2.1 | 1.35 GB | #####6 | 15%
libcusolver-11.4.4.5 | 98.3 MB | ##########################4 | 72%
cudatoolkit-11.8.0 | 630.7 MB | ###############2 | 41%
libcufft-11.0.2.4 | 102.9 MB | ####################6 | 56%
pytorch-2.2.1 | 1.35 GB | #####7 | 15%
libcusolver-11.4.4.5 | 98.3 MB | ###########################2 | 74%
cudatoolkit-11.8.0 | 630.7 MB | ###############4 | 42%
libcufft-11.0.2.4 | 102.9 MB | ####################9 | 57%
pytorch-2.2.1 | 1.35 GB | #####7 | 16%
cudatoolkit-11.8.0 | 630.7 MB | ###############5 | 42%
libcusolver-11.4.4.5 | 98.3 MB | ###########################9 | 76%
libcufft-11.0.2.4 | 102.9 MB | #####################2 | 58%
pytorch-2.2.1 | 1.35 GB | #####7 | 16%
cudatoolkit-11.8.0 | 630.7 MB | ###############7 | 42%
libcusolver-11.4.4.5 | 98.3 MB | ############################7 | 78%
libcufft-11.0.2.4 | 102.9 MB | #####################6 | 58%
pytorch-2.2.1 | 1.35 GB | #####8 | 16%
cudatoolkit-11.8.0 | 630.7 MB | ###############8 | 43%
libcusolver-11.4.4.5 | 98.3 MB | #############################4 | 80%
libcufft-11.0.2.4 | 102.9 MB | #####################9 | 59%
pytorch-2.2.1 | 1.35 GB | #####8 | 16%
cudatoolkit-11.8.0 | 630.7 MB | ################ | 43%
libcusolver-11.4.4.5 | 98.3 MB | ##############################2 | 82%
libcufft-11.0.2.4 | 102.9 MB | ######################2 | 60%
pytorch-2.2.1 | 1.35 GB | #####8 | 16%
cudatoolkit-11.8.0 | 630.7 MB | ################1 | 44%
libcusolver-11.4.4.5 | 98.3 MB | ##############################9 | 84%
libcufft-11.0.2.4 | 102.9 MB | ######################6 | 61%
pytorch-2.2.1 | 1.35 GB | #####9 | 16%
cudatoolkit-11.8.0 | 630.7 MB | ################3 | 44%
libcusolver-11.4.4.5 | 98.3 MB | ###############################6 | 86%
libcufft-11.0.2.4 | 102.9 MB | ####################### | 62%
pytorch-2.2.1 | 1.35 GB | #####9 | 16%
libcusolver-11.4.4.5 | 98.3 MB | ################################4 | 88%
cudatoolkit-11.8.0 | 630.7 MB | ################4 | 45%
libcufft-11.0.2.4 | 102.9 MB | #######################4 | 63%
pytorch-2.2.1 | 1.35 GB | #####9 | 16%
libcusolver-11.4.4.5 | 98.3 MB | #################################1 | 90%
cudatoolkit-11.8.0 | 630.7 MB | ################6 | 45%
pytorch-2.2.1 | 1.35 GB | #####9 | 16%
libcusolver-11.4.4.5 | 98.3 MB | #################################8 | 92%
cudatoolkit-11.8.0 | 630.7 MB | ################7 | 45%
libcufft-11.0.2.4 | 102.9 MB | ########################4 | 66%
pytorch-2.2.1 | 1.35 GB | ###### | 16%
libcusolver-11.4.4.5 | 98.3 MB | ##################################6 | 94%
cudatoolkit-11.8.0 | 630.7 MB | ################8 | 46%
libcufft-11.0.2.4 | 102.9 MB | ########################9 | 67%
libcublas-12.1.0.26 | 329.0 MB | ##########################8 | 72%
pytorch-2.2.1 | 1.35 GB | ###### | 16%
libcufft-11.0.2.4 | 102.9 MB | #########################4 | 69%
cudatoolkit-11.8.0 | 630.7 MB | ################# | 46%
libcublas-12.1.0.26 | 329.0 MB | ##########################9 | 73%
pytorch-2.2.1 | 1.35 GB | ###### | 16%
cudatoolkit-11.8.0 | 630.7 MB | #################1 | 46%
libcufft-11.0.2.4 | 102.9 MB | #########################9 | 70%
libcublas-12.1.0.26 | 329.0 MB | ########################### | 73%
libcusolver-11.4.4.5 | 98.3 MB | ####################################8 | 100%
pytorch-2.2.1 | 1.35 GB | ######1 | 17%
libcufft-11.0.2.4 | 102.9 MB | ##########################4 | 71%
libcublas-12.1.0.26 | 329.0 MB | ###########################1 | 73%
pytorch-2.2.1 | 1.35 GB | ######1 | 17%
libcufft-11.0.2.4 | 102.9 MB | ########################### | 73%
libcublas-12.1.0.26 | 329.0 MB | ###########################2 | 74%
pytorch-2.2.1 | 1.35 GB | ######1 | 17%
libcufft-11.0.2.4 | 102.9 MB | ###########################6 | 75%
libcublas-12.1.0.26 | 329.0 MB | ###########################3 | 74%
libcurand-10.3.5.119 | 51.8 MB | | 0%
pytorch-2.2.1 | 1.35 GB | ######2 | 17%
libcufft-11.0.2.4 | 102.9 MB | ############################1 | 76%
libcublas-12.1.0.26 | 329.0 MB | ###########################4 | 74%
libcurand-10.3.5.119 | 51.8 MB | #1 | 3%
pytorch-2.2.1 | 1.35 GB | ######2 | 17%
libcublas-12.1.0.26 | 329.0 MB | ###########################6 | 75%
libcufft-11.0.2.4 | 102.9 MB | ############################6 | 77%
libcurand-10.3.5.119 | 51.8 MB | ##2 | 6%
pytorch-2.2.1 | 1.35 GB | ######2 | 17%
libcublas-12.1.0.26 | 329.0 MB | ###########################7 | 75%
libcufft-11.0.2.4 | 102.9 MB | #############################1 | 79%
pytorch-2.2.1 | 1.35 GB | ######3 | 17%
cudatoolkit-11.8.0 | 630.7 MB | ##################3 | 50%
libcublas-12.1.0.26 | 329.0 MB | ###########################8 | 75%
libcurand-10.3.5.119 | 51.8 MB | ####9 | 13%
libcufft-11.0.2.4 | 102.9 MB | #############################6 | 80%
pytorch-2.2.1 | 1.35 GB | ######3 | 17%
libcublas-12.1.0.26 | 329.0 MB | ###########################9 | 76%
libcurand-10.3.5.119 | 51.8 MB | ######3 | 17%
libcufft-11.0.2.4 | 102.9 MB | ############################## | 81%
pytorch-2.2.1 | 1.35 GB | ######3 | 17%
libcublas-12.1.0.26 | 329.0 MB | ############################1 | 76%
libcurand-10.3.5.119 | 51.8 MB | #######8 | 21%
cudatoolkit-11.8.0 | 630.7 MB | ##################8 | 51%
libcufft-11.0.2.4 | 102.9 MB | ##############################4 | 82%
pytorch-2.2.1 | 1.35 GB | ######4 | 17%
libcublas-12.1.0.26 | 329.0 MB | ############################2 | 76%
cudatoolkit-11.8.0 | 630.7 MB | ##################9 | 51%
libcurand-10.3.5.119 | 51.8 MB | ##########9 | 30%
pytorch-2.2.1 | 1.35 GB | ######4 | 17%
libcufft-11.0.2.4 | 102.9 MB | ##############################7 | 83%
cudatoolkit-11.8.0 | 630.7 MB | ###################1 | 52%
libcurand-10.3.5.119 | 51.8 MB | ############5 | 34%
libcublas-12.1.0.26 | 329.0 MB | ############################4 | 77%
pytorch-2.2.1 | 1.35 GB | ######4 | 17%
cudatoolkit-11.8.0 | 630.7 MB | ###################3 | 52%
libcurand-10.3.5.119 | 51.8 MB | ##############1 | 38%
libcublas-12.1.0.26 | 329.0 MB | ############################5 | 77%
cudatoolkit-11.8.0 | 630.7 MB | ###################4 | 53%
pytorch-2.2.1 | 1.35 GB | ######4 | 18%
libcurand-10.3.5.119 | 51.8 MB | ###############7 | 43%
libcublas-12.1.0.26 | 329.0 MB | ############################6 | 77%
cudatoolkit-11.8.0 | 630.7 MB | ###################6 | 53%
pytorch-2.2.1 | 1.35 GB | ######5 | 18%
libcurand-10.3.5.119 | 51.8 MB | #################3 | 47%
libcublas-12.1.0.26 | 329.0 MB | ############################7 | 78%
cudatoolkit-11.8.0 | 630.7 MB | ###################8 | 54%
pytorch-2.2.1 | 1.35 GB | ######5 | 18%
libcurand-10.3.5.119 | 51.8 MB | ##################9 | 51%
libcublas-12.1.0.26 | 329.0 MB | ############################8 | 78%
cudatoolkit-11.8.0 | 630.7 MB | ###################9 | 54%
pytorch-2.2.1 | 1.35 GB | ######5 | 18%
libcurand-10.3.5.119 | 51.8 MB | ####################5 | 56%
libcublas-12.1.0.26 | 329.0 MB | ############################9 | 78%
cudatoolkit-11.8.0 | 630.7 MB | ####################1 | 54%
libcufft-11.0.2.4 | 102.9 MB | ################################6 | 88%
pytorch-2.2.1 | 1.35 GB | ######5 | 18%
libcublas-12.1.0.26 | 329.0 MB | ############################# | 79%
cudatoolkit-11.8.0 | 630.7 MB | ####################2 | 55%
libcufft-11.0.2.4 | 102.9 MB | ################################9 | 89%
pytorch-2.2.1 | 1.35 GB | ######6 | 18%
libcublas-12.1.0.26 | 329.0 MB | #############################1 | 79%
cudatoolkit-11.8.0 | 630.7 MB | ####################4 | 55%
libcufft-11.0.2.4 | 102.9 MB | #################################2 | 90%
pytorch-2.2.1 | 1.35 GB | ######6 | 18%
libcublas-12.1.0.26 | 329.0 MB | #############################2 | 79%
cudatoolkit-11.8.0 | 630.7 MB | ####################6 | 56%
libcufft-11.0.2.4 | 102.9 MB | #################################6 | 91%
pytorch-2.2.1 | 1.35 GB | ######6 | 18%
libcublas-12.1.0.26 | 329.0 MB | #############################3 | 79%
libcufft-11.0.2.4 | 102.9 MB | #################################9 | 92%
cudatoolkit-11.8.0 | 630.7 MB | ####################7 | 56%
pytorch-2.2.1 | 1.35 GB | ######6 | 18%
libcublas-12.1.0.26 | 329.0 MB | #############################4 | 80%
libcufft-11.0.2.4 | 102.9 MB | ##################################2 | 93%
cudatoolkit-11.8.0 | 630.7 MB | ####################9 | 57%
pytorch-2.2.1 | 1.35 GB | ######6 | 18%
libcublas-12.1.0.26 | 329.0 MB | #############################5 | 80%
libcufft-11.0.2.4 | 102.9 MB | ##################################5 | 94%
libcurand-10.3.5.119 | 51.8 MB | ################################6 | 88%
pytorch-2.2.1 | 1.35 GB | ######7 | 18%
libcublas-12.1.0.26 | 329.0 MB | #############################6 | 80%
libcufft-11.0.2.4 | 102.9 MB | ##################################9 | 94%
libcurand-10.3.5.119 | 51.8 MB | ##################################5 | 93%
pytorch-2.2.1 | 1.35 GB | ######7 | 18%
libcublas-12.1.0.26 | 329.0 MB | #############################7 | 80%
libcufft-11.0.2.4 | 102.9 MB | ###################################3 | 95%
pytorch-2.2.1 | 1.35 GB | ######7 | 18%
cudatoolkit-11.8.0 | 630.7 MB | #####################3 | 58%
libcublas-12.1.0.26 | 329.0 MB | #############################8 | 81%
pytorch-2.2.1 | 1.35 GB | ######8 | 18%
cudatoolkit-11.8.0 | 630.7 MB | #####################5 | 58%
libcublas-12.1.0.26 | 329.0 MB | ############################## | 81%
pytorch-2.2.1 | 1.35 GB | ######8 | 19%
python-3.11.8 | 32.9 MB | | 0%
cudatoolkit-11.8.0 | 630.7 MB | #####################7 | 59%
libcublas-12.1.0.26 | 329.0 MB | ##############################1 | 81%
libcufft-11.0.2.4 | 102.9 MB | ####################################7 | 99%
pytorch-2.2.1 | 1.35 GB | ######8 | 19%
cudatoolkit-11.8.0 | 630.7 MB | #####################8 | 59%
python-3.11.8 | 32.9 MB | #########2 | 25%
libcublas-12.1.0.26 | 329.0 MB | ##############################2 | 82%
pytorch-2.2.1 | 1.35 GB | ######9 | 19%
python-3.11.8 | 32.9 MB | ######################2 | 60%
cuda-nvrtc-12.1.105 | 19.7 MB | | 0%
cudatoolkit-11.8.0 | 630.7 MB | ###################### | 59%
python-3.11.8 | 32.9 MB | ############################5 | 77%
cuda-nvrtc-12.1.105 | 19.7 MB | #2 | 3%
python-3.11.8 | 32.9 MB | ###################################5 | 96%
cuda-nvrtc-12.1.105 | 19.7 MB | ##4 | 7%
cudatoolkit-11.8.0 | 630.7 MB | ######################1 | 60%
pytorch-2.2.1 | 1.35 GB | ######9 | 19%
libnvjitlink-12.1.10 | 16.9 MB | | 0%
cudatoolkit-11.8.0 | 630.7 MB | ######################3 | 60%
pytorch-2.2.1 | 1.35 GB | ######9 | 19%
libnvjitlink-12.1.10 | 16.9 MB | ####8 | 13%
cudatoolkit-11.8.0 | 630.7 MB | ######################5 | 61%
cuda-nvrtc-12.1.105 | 19.7 MB | ###5 | 10%
pytorch-2.2.1 | 1.35 GB | ######9 | 19%
libnvjitlink-12.1.10 | 16.9 MB | #########7 | 26%
cudatoolkit-11.8.0 | 630.7 MB | ######################7 | 61%
cuda-nvrtc-12.1.105 | 19.7 MB | #####2 | 14%
pytorch-2.2.1 | 1.35 GB | ####### | 19%
libnvjitlink-12.1.10 | 16.9 MB | ############### | 41%
cudatoolkit-11.8.0 | 630.7 MB | ######################9 | 62%
pytorch-2.2.1 | 1.35 GB | ####### | 19%
libcublas-12.1.0.26 | 329.0 MB | ##############################5 | 83%
libnvjitlink-12.1.10 | 16.9 MB | ####################7 | 56%
cuda-nvrtc-12.1.105 | 19.7 MB | ########8 | 24%
pytorch-2.2.1 | 1.35 GB | ####### | 19%
libnvjitlink-12.1.10 | 16.9 MB | ##########################7 | 72%
libcublas-12.1.0.26 | 329.0 MB | ##############################6 | 83%
pytorch-2.2.1 | 1.35 GB | #######1 | 19%
cudatoolkit-11.8.0 | 630.7 MB | #######################2 | 63%
libcublas-12.1.0.26 | 329.0 MB | ##############################7 | 83%
libnvjitlink-12.1.10 | 16.9 MB | ################################2 | 87%
pytorch-2.2.1 | 1.35 GB | #######1 | 19%
libcublas-12.1.0.26 | 329.0 MB | ##############################7 | 83%
cudatoolkit-11.8.0 | 630.7 MB | #######################3 | 63%
pytorch-2.2.1 | 1.35 GB | #######2 | 19%
libcublas-12.1.0.26 | 329.0 MB | ##############################8 | 83%
cudatoolkit-11.8.0 | 630.7 MB | #######################5 | 64%
cuda-cupti-12.1.105 | 15.4 MB | | 0%
pytorch-2.2.1 | 1.35 GB | #######2 | 20%
libcublas-12.1.0.26 | 329.0 MB | ##############################9 | 84%
cuda-cupti-12.1.105 | 15.4 MB | #### | 11%
cudatoolkit-11.8.0 | 630.7 MB | #######################6 | 64%
pytorch-2.2.1 | 1.35 GB | #######2 | 20%
libcublas-12.1.0.26 | 329.0 MB | ############################### | 84%
cuda-cupti-12.1.105 | 15.4 MB | ########3 | 22%
cudatoolkit-11.8.0 | 630.7 MB | #######################7 | 64%
pytorch-2.2.1 | 1.35 GB | #######3 | 20%
libcublas-12.1.0.26 | 329.0 MB | ###############################1 | 84%
cuda-cupti-12.1.105 | 15.4 MB | ############6 | 34%
cudatoolkit-11.8.0 | 630.7 MB | #######################9 | 65%
pytorch-2.2.1 | 1.35 GB | #######3 | 20%
libcublas-12.1.0.26 | 329.0 MB | ###############################2 | 84%
cuda-cupti-12.1.105 | 15.4 MB | ################9 | 46%
cuda-nvrtc-12.1.105 | 19.7 MB | ############################4 | 77%
cudatoolkit-11.8.0 | 630.7 MB | ######################## | 65%
pytorch-2.2.1 | 1.35 GB | #######4 | 20%
cuda-cupti-12.1.105 | 15.4 MB | #####################4 | 58%
cuda-nvrtc-12.1.105 | 19.7 MB | ###############################3 | 85%
libcublas-12.1.0.26 | 329.0 MB | ###############################4 | 85%
pytorch-2.2.1 | 1.35 GB | #######4 | 20%
cuda-cupti-12.1.105 | 15.4 MB | #########################7 | 70%
cuda-nvrtc-12.1.105 | 19.7 MB | ##################################2 | 92%
libcublas-12.1.0.26 | 329.0 MB | ###############################5 | 85%
pytorch-2.2.1 | 1.35 GB | #######5 | 20%
cuda-cupti-12.1.105 | 15.4 MB | ############################## | 81%
libcublas-12.1.0.26 | 329.0 MB | ###############################6 | 85%
pytorch-2.2.1 | 1.35 GB | #######5 | 20%
cuda-cupti-12.1.105 | 15.4 MB | ##################################3 | 93%
torchvision-0.15.2 | 10.3 MB | | 0%
libcublas-12.1.0.26 | 329.0 MB | ###############################7 | 86%
pytorch-2.2.1 | 1.35 GB | #######5 | 21%
numpy-base-1.26.4 | 8.3 MB | | 0%
torchvision-0.15.2 | 10.3 MB | ########2 | 22%
numpy-base-1.26.4 | 8.3 MB | #################6 | 48%
torchvision-0.15.2 | 10.3 MB | ################3 | 44%
numpy-base-1.26.4 | 8.3 MB | ###################################2 | 95%
libcublas-12.1.0.26 | 329.0 MB | ###############################8 | 86%
pytorch-2.2.1 | 1.35 GB | #######6 | 21%
cudatoolkit-11.8.0 | 630.7 MB | ########################5 | 66%
torchaudio-2.2.1 | 6.4 MB | | 0%
torchvision-0.15.2 | 10.3 MB | ###################################1 | 95%
pytorch-2.2.1 | 1.35 GB | #######6 | 21%
libnvjpeg-12.1.1.14 | 2.9 MB | 1 | 1%
torchaudio-2.2.1 | 6.4 MB | #################4 | 47%
cudatoolkit-11.8.0 | 630.7 MB | ########################6 | 67%
pytorch-2.2.1 | 1.35 GB | #######6 | 21%
libnvjpeg-12.1.1.14 | 2.9 MB | ###############4 | 42%
torchaudio-2.2.1 | 6.4 MB | ##################################8 | 94%
cudatoolkit-11.8.0 | 630.7 MB | ########################7 | 67%
libcufile-1.9.0.20 | 1.0 MB | 5 | 2%
pytorch-2.2.1 | 1.35 GB | #######7 | 21%
bzip2-1.0.8 | 262 KB | ##2 | 6%
xz-5.4.6 | 651 KB | 9 | 2%
cudatoolkit-11.8.0 | 630.7 MB | ########################8 | 67%
libcublas-12.1.0.26 | 329.0 MB | ################################3 | 87%
pytorch-2.2.1 | 1.35 GB | #######7 | 21%
tzdata-2024a | 116 KB | ##### | 14%
cuda-nvtx-12.1.105 | 57 KB | ##########3 | 28%
cudatoolkit-11.8.0 | 630.7 MB | ########################9 | 67%
cuda-opencl-12.4.99 | 11 KB | ##################################### | 100%
... (more hidden) ...
pytorch-2.2.1 | 1.35 GB | #######8 | 21%
cudatoolkit-11.8.0 | 630.7 MB | #########################1 | 68%
pytorch-2.2.1 | 1.35 GB | #######9 | 21%
cudatoolkit-11.8.0 | 630.7 MB | #########################2 | 68%
pytorch-2.2.1 | 1.35 GB | ######## | 22%
libnpp-12.0.2.50 | 139.8 MB | ##################################### | 100%
cudatoolkit-11.8.0 | 630.7 MB | #########################3 | 69%
pytorch-2.2.1 | 1.35 GB | ######## | 22%
cudatoolkit-11.8.0 | 630.7 MB | #########################5 | 69%
pytorch-2.2.1 | 1.35 GB | ########1 | 22%
cudatoolkit-11.8.0 | 630.7 MB | #########################6 | 69%
pytorch-2.2.1 | 1.35 GB | ########2 | 22%
cudatoolkit-11.8.0 | 630.7 MB | #########################8 | 70%
pytorch-2.2.1 | 1.35 GB | ########3 | 22%
cudatoolkit-11.8.0 | 630.7 MB | #########################9 | 70%
pytorch-2.2.1 | 1.35 GB | ########3 | 23%
cudatoolkit-11.8.0 | 630.7 MB | ##########################1 | 71%
pytorch-2.2.1 | 1.35 GB | ########4 | 23%
cudatoolkit-11.8.0 | 630.7 MB | ##########################2 | 71%
pytorch-2.2.1 | 1.35 GB | ########5 | 23%
cudatoolkit-11.8.0 | 630.7 MB | ##########################4 | 71%
libcublas-12.1.0.26 | 329.0 MB | ###################################4 | 96%
pytorch-2.2.1 | 1.35 GB | ########5 | 23%
libcublas-12.1.0.26 | 329.0 MB | ###################################7 | 97%
pytorch-2.2.1 | 1.35 GB | ########6 | 23%
libcublas-12.1.0.26 | 329.0 MB | #################################### | 98%
pytorch-2.2.1 | 1.35 GB | ########6 | 23%
libcublas-12.1.0.26 | 329.0 MB | ####################################4 | 98%
pytorch-2.2.1 | 1.35 GB | ########7 | 24%
libcublas-12.1.0.26 | 329.0 MB | ####################################7 | 99%
pytorch-2.2.1 | 1.35 GB | ########7 | 24%
pytorch-2.2.1 | 1.35 GB | ########8 | 24%
pytorch-2.2.1 | 1.35 GB | ########9 | 24%
pytorch-2.2.1 | 1.35 GB | ######### | 25%
pytorch-2.2.1 | 1.35 GB | #########1 | 25%
pytorch-2.2.1 | 1.35 GB | #########2 | 25%
pytorch-2.2.1 | 1.35 GB | #########3 | 25%
pytorch-2.2.1 | 1.35 GB | #########4 | 26%
pytorch-2.2.1 | 1.35 GB | #########5 | 26%
pytorch-2.2.1 | 1.35 GB | #########6 | 26%
pytorch-2.2.1 | 1.35 GB | #########7 | 26%
pytorch-2.2.1 | 1.35 GB | #########7 | 26%
pytorch-2.2.1 | 1.35 GB | #########8 | 27%
pytorch-2.2.1 | 1.35 GB | #########9 | 27%
pytorch-2.2.1 | 1.35 GB | ########## | 27%
pytorch-2.2.1 | 1.35 GB | ##########1 | 27%
pytorch-2.2.1 | 1.35 GB | ##########2 | 28%
pytorch-2.2.1 | 1.35 GB | ##########3 | 28%
pytorch-2.2.1 | 1.35 GB | ##########4 | 28%
pytorch-2.2.1 | 1.35 GB | ##########5 | 28%
pytorch-2.2.1 | 1.35 GB | ##########6 | 29%
pytorch-2.2.1 | 1.35 GB | ##########7 | 29%
pytorch-2.2.1 | 1.35 GB | ##########8 | 29%
pytorch-2.2.1 | 1.35 GB | ##########9 | 29%
pytorch-2.2.1 | 1.35 GB | ##########9 | 30%
pytorch-2.2.1 | 1.35 GB | ########### | 30%
pytorch-2.2.1 | 1.35 GB | ###########1 | 30%
pytorch-2.2.1 | 1.35 GB | ###########2 | 30%
pytorch-2.2.1 | 1.35 GB | ###########3 | 31%
libcusparse-12.0.2.5 | 163.0 MB | ##################################### | 100%
pytorch-2.2.1 | 1.35 GB | ###########4 | 31%
pytorch-2.2.1 | 1.35 GB | ###########5 | 31%
pytorch-2.2.1 | 1.35 GB | ###########6 | 31%
pytorch-2.2.1 | 1.35 GB | ###########7 | 32%
cudatoolkit-11.8.0 | 630.7 MB | ###################################5 | 96%
pytorch-2.2.1 | 1.35 GB | ###########7 | 32%
pytorch-2.2.1 | 1.35 GB | ###########8 | 32%
pytorch-2.2.1 | 1.35 GB | ###########9 | 32%
pytorch-2.2.1 | 1.35 GB | ############ | 33%
pytorch-2.2.1 | 1.35 GB | ############1 | 33%
pytorch-2.2.1 | 1.35 GB | #############3 | 36%
pytorch-2.2.1 | 1.35 GB | ################2 | 44%
pytorch-2.2.1 | 1.35 GB | ##################6 | 50%
pytorch-2.2.1 | 1.35 GB | ###################3 | 52%
cuda-nvrtc-12.1.105 | 19.7 MB | ##################################### | 100%
pytorch-2.2.1 | 1.35 GB | ####################1 | 54%
pytorch-2.2.1 | 1.35 GB | ####################4 | 55%
pytorch-2.2.1 | 1.35 GB | #####################7 | 59%
pytorch-2.2.1 | 1.35 GB | #####################9 | 59%
pytorch-2.2.1 | 1.35 GB | ######################1 | 60%
libcufile-1.9.0.20 | 1.0 MB | ##################################### | 100%
libcufile-1.9.0.20 | 1.0 MB | ##################################### | 100%
bzip2-1.0.8 | 262 KB | ##################################### | 100%
pytorch-2.2.1 | 1.35 GB | ######################2 | 60%
xz-5.4.6 | 651 KB | ##################################### | 100%
xz-5.4.6 | 651 KB | ##################################### | 100%
libnvjpeg-12.1.1.14 | 2.9 MB | ##################################### | 100%
pytorch-2.2.1 | 1.35 GB | ######################4 | 61%
cuda-cudart-12.1.105 | 189 KB | ##################################### | 100%
cuda-cudart-12.1.105 | 189 KB | ##################################### | 100%
cuda-nvtx-12.1.105 | 57 KB | ##################################### | 100%
cuda-nvtx-12.1.105 | 57 KB | ##################################### | 100%
pytorch-2.2.1 | 1.35 GB | ######################6 | 61%
pytorch-2.2.1 | 1.35 GB | ######################8 | 62% [A
tzdata-2024a | 116 KB | ##################################### | 100%
pytorch-2.2.1 | 1.35 GB | ########################### | 73%
pytorch-2.2.1 | 1.35 GB | #################################4 | 90%
pytorch-2.2.1 | 1.35 GB | ####################################9 | 100%
pytorch-2.2.1 | 1.35 GB | ##################################### | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: By downloading and using the CUDA Toolkit conda packages, you accept the terms and conditions of the CUDA End User License Agreement (EULA): https://docs.nvidia.com/cuda/eula/index.html
done
Installing pip dependencies: - Ran pip subprocess with arguments:
['/home/wallabot/miniforge3/envs/entorno_desde_archivo/bin/python', '-m', 'pip', 'install', '-U', '-r', '/home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt', '--exists-action=b']
Pip subprocess output:
Collecting transformers (from -r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1))
Downloading transformers-4.38.2-py3-none-any.whl.metadata (130 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 130.7/130.7 kB 5.0 MB/s eta 0:00:00
Requirement already satisfied: filelock in /home/wallabot/miniforge3/envs/entorno_desde_archivo/lib/python3.11/site-packages (from transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1)) (3.13.1)
Collecting huggingface-hub<1.0,>=0.19.3 (from transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1))
Downloading huggingface_hub-0.21.4-py3-none-any.whl.metadata (13 kB)
Requirement already satisfied: numpy>=1.17 in /home/wallabot/miniforge3/envs/entorno_desde_archivo/lib/python3.11/site-packages (from transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1)) (1.26.4)
Collecting packaging>=20.0 (from transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1))
Using cached packaging-23.2-py3-none-any.whl.metadata (3.2 kB)
Requirement already satisfied: pyyaml>=5.1 in /home/wallabot/miniforge3/envs/entorno_desde_archivo/lib/python3.11/site-packages (from transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1)) (6.0.1)
Collecting regex!=2019.12.17 (from transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1))
Using cached regex-2023.12.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (40 kB)
Requirement already satisfied: requests in /home/wallabot/miniforge3/envs/entorno_desde_archivo/lib/python3.11/site-packages (from transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1)) (2.31.0)
Collecting tokenizers<0.19,>=0.14 (from transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1))
Downloading tokenizers-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB)
Collecting safetensors>=0.4.1 (from transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1))
Using cached safetensors-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.8 kB)
Collecting tqdm>=4.27 (from transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1))
Downloading tqdm-4.66.2-py3-none-any.whl.metadata (57 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.6/57.6 kB 3.4 MB/s eta 0:00:00
Collecting fsspec>=2023.5.0 (from huggingface-hub<1.0,>=0.19.3->transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1))
Using cached fsspec-2024.2.0-py3-none-any.whl.metadata (6.8 kB)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/wallabot/miniforge3/envs/entorno_desde_archivo/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.19.3->transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1)) (4.9.0)
Requirement already satisfied: charset-normalizer<4,>=2 in /home/wallabot/miniforge3/envs/entorno_desde_archivo/lib/python3.11/site-packages (from requests->transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1)) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in /home/wallabot/miniforge3/envs/entorno_desde_archivo/lib/python3.11/site-packages (from requests->transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1)) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /home/wallabot/miniforge3/envs/entorno_desde_archivo/lib/python3.11/site-packages (from requests->transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1)) (2.1.0)
Requirement already satisfied: certifi>=2017.4.17 in /home/wallabot/miniforge3/envs/entorno_desde_archivo/lib/python3.11/site-packages (from requests->transformers->-r /home/wallabot/Documentos/web/portafolio/posts/condaenv.vsafek98.requirements.txt (line 1)) (2024.2.2)
Downloading transformers-4.38.2-py3-none-any.whl (8.5 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.5/8.5 MB 40.1 MB/s eta 0:00:0000:0100:01
Downloading huggingface_hub-0.21.4-py3-none-any.whl (346 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 346.4/346.4 kB 20.4 MB/s eta 0:00:00
Using cached packaging-23.2-py3-none-any.whl (53 kB)
Using cached regex-2023.12.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (785 kB)
Using cached safetensors-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)
Downloading tokenizers-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.6/3.6 MB 44.0 MB/s eta 0:00:0000:0100:01
Downloading tqdm-4.66.2-py3-none-any.whl (78 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 78.3/78.3 kB 5.1 MB/s eta 0:00:00
Using cached fsspec-2024.2.0-py3-none-any.whl (170 kB)
Installing collected packages: tqdm, safetensors, regex, packaging, fsspec, huggingface-hub, tokenizers, transformers
Successfully installed fsspec-2024.2.0 huggingface-hub-0.21.4 packaging-23.2 regex-2023.12.25 safetensors-0.4.2 tokenizers-0.15.2 tqdm-4.66.2 transformers-4.38.2
done
#
# To activate this environment, use
#
# $ conda activate entorno_desde_archivo
#
# To deactivate an active environment, use
#
# $ conda deactivate

Instalar pacotes de um repositóriolink image 26

Outra coisa que podemos fazer é ter uma lista de pacotes que queremos instalar. Para instalá-los todos de uma vez, podemos criar um arquivo chamado requirements.yml com conteúdo como este

txt
      canais:
        - conda-forge
      dependências:
        - pandas==2.2.1
        - matplotlib==3.8.3
      ```
      
      E agora dizemos ao conda para instalar esses pacotes para nós.
      
      ````bash
      conda install --file requirements.yml
      ```
	
!touch requirements.txt \
&& echo "pandas==2.2.1" >> requirements.txt \
&& echo "matplotlib==3.8.3" >> requirements.txt
Copy

Agora que temos o arquivo, instalamos os pacotes

	
!touch requirements.txt \
&& echo "pandas==2.2.1" >> requirements.txt \
&& echo "matplotlib==3.8.3" >> requirements.txt
!conda install --file requirements.txt
Copy
	
Channels:
- conda-forge
- defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: warning libmamba Added empty dependency for problem type SOLVER_RULE_UPDATE
failed
LibMambaUnsatisfiableError: Encountered problems while solving:
- package pandas-1.3.3-py37h40f5888_0 requires python >=3.7,<3.8.0a0, but none of the providers can be installed
Could not solve for environment specs
The following packages are incompatible
├─ pandas 1.3.3 is installable with the potential options
│ ├─ pandas 1.3.3 would require
│ │ └─ python >=3.7,<3.8.0a0 , which can be installed;
│ ├─ pandas 1.3.3 would require
│ │ └─ python >=3.8,<3.9.0a0 , which can be installed;
│ └─ pandas 1.3.3 would require
│ └─ python >=3.9,<3.10.0a0 , which can be installed;
└─ pin-1 is not installable because it requires
└─ python 3.11.* , which conflicts with any installable versions previously reported.
Pins seem to be involved in the conflict. Currently pinned specs:
- python 3.11.* (labeled as 'pin-1')

Continuar lendo

DoLa – Decoding by Contrasting Layers Improves Factuality in Large Language Models

DoLa – Decoding by Contrasting Layers Improves Factuality in Large Language Models

Você já conversou com um LLM e ele lhe respondeu algo que parece ter bebido café de máquina a noite toda? 😂 Isso é o que chamamos de alucinação no mundo dos LLMs! Mas não se preocupe, pois não é que seu modelo de linguagem esteja louco (embora às vezes possa parecer isso 🤪). A verdade é que os LLMs podem ser um pouco... criativos quando se trata de gerar texto. Mas graças ao DoLa, um método que usa camadas de contraste para melhorar a viabilidade dos LLMs, podemos evitar que nossos modelos de linguagem se transformem em escritores de ficção científica 😂. Nesta publicação, explicarei como o DoLa funciona e mostrarei um exemplo de código para que você possa entender melhor como tornar seus LLMs mais confiáveis e menos propensos a inventar histórias. Vamos salvar nossos LLMs da loucura e torná-los mais úteis! 🚀

Últimos posts -->

Você viu esses projetos?

Subtify

Subtify Subtify

Gerador de legendas para vídeos no idioma que você desejar. Além disso, coloca uma legenda de cor diferente para cada pessoa

Ver todos os projetos -->

Quer aplicar IA no seu projeto? Entre em contato!

Quer melhorar com essas dicas?

Últimos tips -->

Use isso localmente

Os espaços do Hugging Face nos permitem executar modelos com demos muito simples, mas e se a demo quebrar? Ou se o usuário a deletar? Por isso, criei contêineres docker com alguns espaços interessantes, para poder usá-los localmente, aconteça o que acontecer. Na verdade, se você clicar em qualquer botão de visualização de projeto, ele pode levá-lo a um espaço que não funciona.

Ver todos os contêineres -->

Quer aplicar IA no seu projeto? Entre em contato!

Você quer treinar seu modelo com esses datasets?

short-jokes-dataset

Dataset com piadas em inglês

opus100

Dataset com traduções de inglês para espanhol

netflix_titles

Dataset com filmes e séries da Netflix

Ver mais datasets -->